Wpływ witamin z grupy B, miedzi i monofosforanu urydyny na funkcjonowanie układu nerwowego Artykuł przeglądowy

##plugins.themes.bootstrap3.article.main##

Magdalena Rudnicka

Abstrakt

Tkanka nerwowa wymaga do prawidłowego funkcjonowania wielu związków, które albo uczestniczą w metabolizmie neuronów, albo chronią je przed neurotoksycznością. Niektóre składniki odżywcze działają jednocześnie na obu płaszczyznach, a ich niedobory wymagają suplementacji. Również w przebiegu stanów patologicznych dotyczących układu nerwowego podawanie tych substancji może się okazać efektywnym i łatwym sposobem wspomagającym terapię.

##plugins.themes.bootstrap3.article.details##

Jak cytować
Rudnicka, M. (2023). Wpływ witamin z grupy B, miedzi i monofosforanu urydyny na funkcjonowanie układu nerwowego . Medycyna Faktów , 16(2(59), 237-241. https://doi.org/10.24292/01.MF.0223.17
Dział
Artykuły

Bibliografia

1. Tardy AL, Pouteau E, Marquez D et al. Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients. 2020; 12: 228.
2. Kennedy DO. B Vitamins and the Brain: Mechanisms, Dose and Efficacy – A Review. Nutrients. 2016; 8: 68.
3. Calderón‐Ospina CA, Nava‐Msa MO. B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci Ther. 2020; 26: 5-13.
4. Jiang J, Wang Y, Deng M. New developments and opportunities in drugs being trialed for amyotrophic lateral sclerosis from 2020 to 2022. Front Pharmacol. 2022; 13: 1054006.
5. Gil Martínez V, Avedillo Salas A, Santander Ballestín S. Vitamin Supplementation and Dementia: A Systematic Review. Nutrients. 2022; 14: 1033.
6. Zając-Lamparska L. Kompensacyjna aktywność mózgu osób starszych. Gerontologia Polska. 2018; 26: 54-8.
7. Paul C, Brady DM. Comparative Bioavailability and Utilization of Particular Forms of B12 Supplements With Potential to Mitigate B12-related Genetic Polymorphisms. Integr Med. 2017; 16(1): 42-9.
8. Spence JD. Reducing the Risk of Stroke in Patients with Impaired Renal Function: Nutritional Issues. J Stroke Cerebrovasc Dis. 2021; 30(9): 105376.
9. Morales-Gutierrez J, Díaz-Cortés S, Montoya-Giraldo MA et al. Toxicity induced by multiple high doses of vitamin B12 during pernicious anemia treatment: a case report. Clin Toxicol (Phila). 2020; 58(2): 129-31.
10. Rossignol DA, Frye RE. The Effectiveness of Cobalamin (B12) Treatment for Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. J Pers Med. 2021; 11: 784.
11. Zhang M, Han W, Hu S et al. Methylcobalamin: A Potential Vitamin of Pain Killer. Neural Plasticity. 2013; 424651.
12. Okada K, Tanaka H, Temporin K et al. Methylcobalamin increases Erk1/2 and Akt activities through the methylation cycle and promotes nerve regeneration in a rat sciatic nerve injury model. Exp Neurol. 2010; 222(2): 191-203.
13. Li Y, Zheng J, Zhu Y et al. Neuroprotective effects of methylcobalamin in cerebral ischemia/reperfusion injury through activation of the ERK1/2 signaling pathway. Int Immunopharmacol. 2021; 99: 108040.
14. Corejová A, Fazekaš T, Jánošíková D et al. Improvement of the Clinical and Psychological Profile of Patients with Autism after Methylcobalamin Syrup Administration. Nutrients. 2022; 14: 2035.
15. Julian T, Syeed R, Glascow N et al. B12 as a Treatment for Peripheral Neuropathic Pain: A Systematic Review. Nutrients. 2020; 12: 2221.
16. Didangelos T, Karlafti E, Kotzakioulaf E et al. Vitamin B12 Supplementation in Diabetic Neuropathy: A 1-Year, Randomized, Double-Blind, Placebo- Controlled Trial. Nutrients. 2021; 13: 395.
17. Obeid R, Schön C, Pietrzik K et al. Pharmacokinetics of Sodium and Calcium Salts of (6S)-5-Methyltetrahydrofolic Acid Compared to Folic Acid and Indirect Comparison of the Two Salts. Nutrients. 2020; 12(12): 3623.
18. Pietrzik K, Bailey L, Shane B. Folic acid and L-5-methyltetrahydrofolate: comparison of clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2010; 49(8): 535-48.
19. Prinz-Langenohl R, Brämswig S, Tobolski O et al. [6S]-5-methyltetrahydrofolate increases plasma folate more effectively than folic acid in women with the homozygous or wild-type 677C,T polymorphism of methylenetetrahydrofolate reductase. Br J Pharmacol. 2009; 158: 2014-21.
20. Ledowsky CJ, Schloss J, Steel A. Variations in folate prescriptions for patients with the MTHFR genetic polymorphisms: A case series study. Explor Res Clin Soc Pharm. 2023; 10: 100277.
21. Kumar N, Gross Jr JB, Ahlskog JE. Copper deficiency myelopathy produces a clinical picture like subacute combined degeneration. Neurology. 2004; 63(1): 33-9.
22. Benkirane A, Warlop T, Ivanoiu A. Case report: Motor neuron disease phenotype associated with symptomatic copper deficiency: Challenging diagnosis and treatment. Front Neurol. 2023; 13: 1063803.
23. Klevay LM. Alzheimer’s disease as copper deficiency. Med Hypotheses. 2008; 70(4): 802-7.
24. Dobolyi A, Juhász G, Kovács Z et al. Uridine function in the central nervous system. Curr Top Med Chem. 2011; 11(8): 1058-67.
25. Cakir A, Esmerce BO, Aydin B et al. Effects of uridine administration on hippocampal matrix metalloproteinases and their endogenous inhibitors in REM sleep-deprived rats. Brain Res. 2022; 1793: 148039.
26. Al-Otaibi A, AlAyed A, Al Madhi A et al. Uridine monophosphate (UMP)-responsive developmental and epileptic encephalopathy: A case report of two siblings and a review of literature. Mol Genet Metab Rep. 2022; 30: 100835.
27. Negrão L, Almeida P, Alcino S et al. Effect of the combination of uridine nucleotides, folic acid and vitamin B12 on the clinical expression of peripheral neuropathies. Pain Manag. 2014; 4(3): 191-6.