New treatment perspectives in multiple sclerosis Review article

Main Article Content

Marcin Wnuk
Agnieszka Słowik

Abstract

Despite progress in the treatment of multiple sclerosis in the last 30 years, therapy of this disease, particularly its progressive subtypes, remains unsatisfactory. In this article, the authors analyzed the Clinical- Trials.gov database in terms of ongoing or completed phase III clinical trials in different multiple sclerosis subtypes. Selected drugs currently in phase II clinical trials were also briefly discussed. The article focused on clinical trials assessing the efficacy and safety of new preparations, such as Bruton’s tyrosine kinase inhibitors, masitinib, or ibudilast. The results of studies with molecules using already known mechanisms of action in this disease as well as with drugs used so far in indications other than multiple sclerosis were also presented. The preliminary results of studies on remyelinating agents in multiple sclerosis, were also discussed.

Article Details

Section
Articles

References

1. Dobson R, Giovannoni G. Multiple sclerosis – a review. Eur J Neurol. 2019; 26: 27-40.
2. Wnuk M, Maluchnik M, Perwieniec J et al. Multiple sclerosis incidence and prevalence in Poland: Data from administrative health claims. Mult Scler Relat Disord. 2021; 55: 103162.
3. De Angelis F, John NA, Brownlee WJ. Disease-modifying therapies for multiple sclerosis. BMJ. 2018; 363: k4674.
4. Cao L, Li M, Yao L et al. Siponimod for multiple sclerosis. Cochrane Database Syst Rev. 2021; 11: CD013647.
5. Hartung H-P, Gonsette R, Konig N et al. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet. 2002; 360: 2018-25.
6. Wawrzyniak S, Rzepiński Ł. Is there a new place for mitoxantrone in the treatment of multiple sclerosis? Neurol Neurochir Pol. 2020; 54: 54-61.
7. Piehl F. Current and emerging disease-modulatory therapies and treatment targets for multiple sclerosis. J Intern Med. 2021; 289: 771-91.
8. García-Merino A. Bruton’s tyrosine kinase inhibitors: A new generation of promising agents for multiple sclerosis therapy. Cells. 2021; 10: 2560.
9. Mohamed AJ, Yu L, Bäckesjö C-M et al. Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev. 2009; 228: 58-73.
10. Reich DS, Arnold DL, Vermersch P et al. Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: a phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2021; 20: 729-38.
11. Lechner KS, Neurath MF, Weigmann B. Role of the IL-2 inducible tyrosine kinase ITK and its inhibitors in disease pathogenesis. J Mol Med. 2020; 98: 1385-95.
12. Dolgin E. BTK blockers make headway in multiple sclerosis. Nat Biotechnol. 2021; 39: 3-5.
13. Isenberg D, Furie R, Jones NS et al. Efficacy, Safety, and Pharmacodynamic Effects of the Bruton’s Tyrosine Kinase Inhibitor Fenebrutinib (GDC-0853) in Systemic Lupus Erythematosus: Results of a Phase II, Randomized, Double-Blind, Placebo-Controlled Trial. Arthritis Rheumatol. 2021; 73: 1835-46.
14. Montalban X, Arnold DL, Weber MS et al. Placebo-Controlled Trial of an Oral BTK Inhibitor in Multiple Sclerosis. N Engl J Med. 2019; 380: 2406-17.
15. Dhillon S. Orelabrutinib: First Approval. Drugs. 2021; 81: 503-7.
16. von Hundelshausen P, Siess W. Bleeding by bruton tyrosine kinase-inhibitors: Dependency on drug type and disease. Cancers (Basel). 2021; 13: 1-33.
17. Dubreuil P, Letard S, Ciufolini M et al. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS One. 2009; 4: e7258.
18. Brown MA, Weinberg RB. Mast cells and innate lymphoid cells: Underappreciated players in CNS autoimmune demyelinating disease. Front Immunol. 2018; 9: 1-14.
19. Vermersch P, Brieva-Ruiz L, Fox RJ et al. Efficacy and Safety of Masitinib in Progressive Forms of Multiple Sclerosis. Neurol Neuroimmunol Neuroinflamm. 2022; 9: e1148.
20. Vermersch P, Benrabah R, Schmidt N et al. Masitinib treatment in patients with progressive multiple sclerosis: a randomized pilot study. BMC Neurol. 2012; 12: 36.
21. Piette F, Belmin J, Vincent H et al. Masitinib as an adjunct therapy for mild-to-moderate Alzheimer’s disease: a randomised, placebo-controlled phase 2 trial. Alzheimers Res Ther. 2011; 3: 16.
22. Mora JS, Genge A, Chio A et al. Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomized clinical trial. Amyotroph Lateral Scler Front Degener. 2020; 21: 5-14.
23. Fox R, Coffey C, Conwit R et al. Phase 2 Trial of Ibudilast in Progressive Multiple Sclerosis. N Engl J Med. 2018; 379: 846-55.
24. Cho Y, Crichlow GV, Vermeire JJ et al. Allosteric inhibition of macrophage migration inhibitory factor revealed by ibudilast. Proc Natl Acad Sci. 2010; 107: 11313-8.
25. Ruiz-Pérez D, Benito J, Polo G et al. The Effects of the Toll-Like Receptor 4 Antagonist, Ibudilast, on Sevoflurane’s Minimum Alveolar Concentration and the Delayed Remifentanil-Induced Increase in the Minimum Alveolar Concentration in Rats. Anesth Analg. 2016; 122: 1370-6.
26. Barkhof F, Hulst HE, Drulovic J et al. Ibudilast in relapsing-remitting multiple sclerosis: A neuroprotectant? Neurology. 2010; 74: 1033-40.
27. Bermel RA, Fedler JK, Kaiser P et al. Optical coherence tomography outcomes from SPRINT-MS, a multicenter, randomized, double-blind trial of ibudilast in progressive multiple sclerosis. Mult Scler J. 2021; 27: 1384-90.
28. Naismith RT, Bermel RA, Coffey CS et al. Effects of Ibudilast on MRI Measures in the Phase 2 SPRINT-MS Study. Neurology. 2021; 96: e491-500.
29. Fox E, Lovett-Racke AE, Gormley M et al. A phase 2 multicenter study of ublituximab, a novel glycoengineered anti-CD20 monoclonal antibody, in patients with relapsing forms of multiple sclerosis. Mult Scler J. 2021; 27: 420-9.
30. Steinman L, Fox E, Hartung H-P et al. Efficacy and safety of ublituximab versus teriflunomide in relapsing multiple sclerosis: Results of the Phase 3 ULTIMATE I and II trials. Neurology. 2021; 96(15 suppl): 4494.
31. Wray S, Then Bergh F, Wundes A et al. Efficacy and Safety Outcomes with Diroximel Fumarate After Switching from Prior Therapies or Continuing on DRF: Results from the Phase 3 EVOLVE-MS-1 Study. Adv Ther. 2022; 39(4): 1810-31.
32. Muehler A, Peelen E, Kohlhof H et al. Vidofludimus calcium, a next generation DHODH inhibitor for the Treatment of relapsing-remitting multiple sclerosis. Mult Scler Relat Disord. 2020; 43: 102129.
33. Kappos L, Fox RJ, Burcklen M et al. Ponesimod Compared With Teriflunomide in Patients With Relapsing Multiple Sclerosis in the Active-Comparator Phase 3 OPTIMUM Study. JAMA Neurol. 2021; 78: 558.
34. Mamani-Matsuda M, Cosma A, Weller S et al. The human spleen is a major reservoir for long-lived vaccinia virus-specific memory B cells. Blood. 2008; 111: 4653-9.
35. Hauser SL, Bar-Or A, Cohen JA et al. Ofatumumab versus Teriflunomide in Multiple Sclerosis. N Engl J Med. 2020; 383: 546-57.
36. Burt RK, Balabanov R, Burman J et al. Effect of Nonmyeloablative Hematopoietic Stem Cell Transplantation vs Continued Disease-Modifying Therapy on Disease Progression in Patients With Relapsing-Remitting Multiple Sclerosis. JAMA. 2019; 321: 165.
37. Bose G, Thebault S, Rush CA et al. Autologous hematopoietic stem cell transplantation for multiple sclerosis: A current perspective. Mult Scler J. 2021; 27: 167-73.
38. Mohammadi R, Aryan A, Omrani MD et al. Autologous hematopoietic stem cell transplantation (Ahsct): An evolving treatment avenue in multiple sclerosis. Biol Targets Ther. 2021; 15: 53-9.
39. Sormani MP, Muraro PA, Schiavetti I et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis. Neurology. 2017; 88: 2115-22.
40. Arrambide G, Iacobaeus E, Amato M et al. Aggressive multiple sclerosis (2): Treatment. Mult Scler. 2020; 26: 1045-63.
41. Harris VK, Stark J, Vyshkina T et al. Phase I Trial of Intrathecal Mesenchymal Stem Cell-derived Neural Progenitors in Progressive Multiple Sclerosis. EBioMedicine. 2018; 29: 23-30.
42. Suuring M, Moreau A. Regulatory macrophages and tolerogenic dendritic cells in myeloid regulatory cell-based therapies. Int J Mol Sci. 2021; 22: 7970.
43. Quirant-Sánchez B, Mansilla MJ, Navarro-Barriuso J et al. Combined therapy of vitamin d3-tolerogenic dendritic cells and interferon-β in a preclinical model of multiple sclerosis. Biomedicines. 2021; 9: 1758.
44. Tourbah A, Lebrun-Frenay C, Edan G et al. MD1003 (high-dose biotin) for the treatment of progressive multiple sclerosis: A randomised, double-blind, placebo-controlled study. Mult Scler J. 2016; 22: 1719-31.
45. Motte J, Gold R. High-dose biotin in multiple sclerosis: the end of the road. Lancet Neurol. 2020; 19: 965-6.
46. Cree BAC, Cutter G, Wolinsky JS, Freedman MS et al. Safety and efficacy of MD1003 (high-dose biotin) in patients with progressive multiple sclerosis (SPI2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2020; 19: 988-97.
47. Gifford JL, Sadrzadeh SMH, Naugler C. Biotin interference: Underrecognized patient safety risk in laboratory testing. Can Fam Physician. 2018; 64: 370.
48. Goldschmidt CH, Cohen JA. The Rise and Fall of High-Dose Biotin to Treat Progressive Multiple Sclerosis. Neurotherapeutics. 2020; 17: 968-70.
49. Cadavid D, Mellion M, Hupperts R et al. Safety and efficacy of opicinumab in patients with relapsing multiple sclerosis (SYNERGY): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2019; 18: 845-56.
50. Ahmed Z, Fulton D, Douglas MR. Opicinumab: is it a potential treatment for multiple sclerosis? Ann Transl Med. 2020; 8: 892.
51. Hanf KJM, Arndt JW, Liu YT et al. Functional activity of anti-LINGO-1 antibody opicinumab requires target engagement at a secondary binding site. MAbs. 2020; 12: 1-14.
52. Chataway J, Schuerer N, Alsanousi A et al. Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (M-STAT): A randomised, placebo-controlled, phase 2 trial. Lancet. 2014; 383: 2213-21.
53. van der Most PJ, Dolga AM, Nijholt IM et al. Statins: Mechanisms of neuroprotection. Prog Neurobiol. 2009; 88: 64-75.
54. Giannopoulos S, Katsanos AH, Tsivgoulis G et al. Statins and Cerebral Hemodynamics. J Cereb Blood Flow Metab. 2012; 32: 1973-6.
55. Green AJ, Gelfand JM, Cree BA et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet. 2017; 390: 2481-9.
56. Dziedzic A, Saluk-Bijak J, Miller E et al. Metformin as a potential agent in the treatment of multiple sclerosis. Int J Mol Sci. 2020; 21: 1-19.
57. Negrotto L, Farez MF, Correale J. Immunologic Effects of Metformin and Pioglitazone Treatment on Metabolic Syndrome and Multiple Sclerosis. JAMA Neurol. 2016; 73: 520.
58. Brown D, Moezzi D, Dong Y et al. Combination of Hydroxychloroquine and Indapamide Attenuates Neurodegeneration in Models Relevant to Multiple Sclerosis. Neurotherapeutics. 2021; 18: 387-400.
59. Rankin KA, Mei F, Kim K et al. Selective estrogen receptor modulators enhance CNS remyelination independent of estrogen receptors. J Neurosci. 2019; 39: 2184-94.
60. Ysrraelit MC, Correale J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology. 2019; 156: 9-22.
61. Metzger-Peter K, Kremer LD, Edan G et al. The TOTEM RRMS (Testosterone Treatment on neuroprotection and Myelin Repair in Relapsing Remitting Multiple Sclerosis) trial: Study protocol for a randomized, double-blind, placebo-controlled trial. Trials. 2020; 21: 1-11.
62. Monti DA, Zabrecky G, Leist TP et al. N-acetyl Cysteine Administration Is Associated With Increased Cerebral Glucose Metabolism in Patients With Multiple Sclerosis: An Exploratory Study. Front Neurol. 2020; 11: 1-8.
63. El Sharouny SH, Shaaban MH, Elsayed RM et al. N-acetylcysteine protects against cuprizone-induced demyelination: histological and immunohistochemical study. Folia Morphol (Warsz). 2021. http://doi.org/10.5603/FM.a2021.0044.
64. Torkildsen Ø, Myhr K-M, Skogen V et al. Tenofovir as a treatment option for multiple sclerosis. Mult Scler Relat Disord. 2020; 46: 102569.
65. Berger JR, Kakara M. The elimination of circulating Epstein-Barr virus infected B cells underlies anti-CD20 monoclonal antibody activity in multiple sclerosis: A hypothesis. Mult Scler Relat Disord. 2022; 59: 103678.
66. Pender MP, Csurhes PA, Smith C et al. Epstein-Barr virus-specific T cell therapy for progressive multiple sclerosis. JCI Insight. 2020; 5: e144624.
67. Huang L, Fung E, Bose S et al. Elezanumab, a clinical stage human monoclonal antibody that selectively targets repulsive guidance molecule A to promote neuroregeneration and neuroprotection in neuronal injury and demyelination models. Neurobiol Dis. 2021; 159: 105492.
68. Demicheva E, Cui Y-F, Bardwell P et al. Targeting Repulsive Guidance Molecule A to Promote Regeneration and Neuroprotection in Multiple Sclerosis. Cell Rep [Internet]. 2015; 10: 1887-98.
69. Cree B, Ziemann A, Pfleeger K et al. ECTRIMS 2021 – Oral Presentations – Safety and efficacy of elezanumab in relapsing and progressive forms of multiple sclerosis: Results from two phase 2 studies, RADIUS-R and RADIUS-P. Mult Scler J. 2021; 27: 92.
70. Küry P, Nath A, Créange A et al. Human Endogenous Retroviruses in Neurological Diseases. Trends Mol Med. 2018; 24: 379-94.
71. Hartung HP, Derfuss T, Cree BAC et al. Efficacy and safety of temelimab in multiple sclerosis: Results of a randomized phase 2b and extension study. Mult Scler J. 2022; 28: 429-40.
72. Kremer D, Förster M, Schichel T et al. The neutralizing antibody GNbAC1 abrogates HERV-W envelope protein-mediated oligodendroglial maturation blockade. Mult Scler J. 2015; 21: 1200-3.
73. Fadul CE, Mao-Draayer Y, Ryan KA et al. Safety and Immune Effects of Blocking CD40 Ligand in Multiple Sclerosis. Neurol Neuroimmunol Neuroinflamm. 2021; 8: e1096.
74. Becher B, Durell BG, Miga AV et al. The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J Exp Med. 2001; 193: 967-74.
75. Li Y, Chu N, Hu A et al. Increased IL-23p19 expression in multiple sclerosis lesions and its induction in microglia. Brain. 2007; 130: 490-501.
76. Derdelinckx J, Cras P, Berneman ZN et al. Antigen-Specific Treatment Modalities in MS: The Past, the Present, and the Future. Front Immunol. 2021; 12: 1-13.
77. Vandenbark AA, Culbertson NE, Bartholomew RM et al. Therapeutic vaccination with a trivalent T-cell receptor (TCR) peptide vaccine restores deficient FoxP3 expression and TCR recognition in subjects with multiple sclerosis. Immunology. 2008; 123: 66-78.
78. Glanzman R, Rin J, Greenberg B et al. ACTRIMS Forum 2021 – Poster Presentations: Effects of Nanocatalysis on CNS Bioenergetic Markers in Patients Treated with CNM-Au8: Interim Results from Two Phase 2 31Phosphorous Imaging Studies. Mult Scler J. 2021; 27: 35-6.
79. Hoffman M. CNM-Au8 Shows Effects on Brain Bioenergetic Metabolism, Supports Candidacy in Multiple Sclerosis (access: 11.04.2022).
80. Glanzman R, Beadnall H, Barnett M et al. ACTRIMS Forum 2021 – VISIONARY-MS: Update to a Phase 2 Clinical Trial of Catalytic Gold Nanocrystals, CNM-Au8, for the Treatment of Chronic Optic Neuropathy. Mult Scler J. 2021; 27(1 suppl): 39-40.
81. Navarrete C, García-Martin A, Garrido-Rodríguez M et al. Effects of EHP-101 on inflammation and remyelination in murine models of Multiple sclerosis. Neurobiol Dis. 2020; 143: 104994.
82. Gacem N, Nait-Oumesmar B. Oligodendrocyte development and regenerative therapeutics in multiple sclerosis. Life. 2021; 11: 327.
83. Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R et al. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clin Microbiol Rev. 2022; 35: e0033820.
84. Li K, Wei S, Hu L et al. Protection of Fecal Microbiota Transplantation in a Mouse Model of Multiple Sclerosis. Mediators Inflamm. 2020; 2020: 1-13.
85. Ghezzi L, Cantoni C, Pinget GV et al. Targeting the gut to treat multiple sclerosis. J Clin Invest. 2021; 131: e143774.