Diet in multiple sclerosis Review article
Main Article Content
Abstract
Multiple sclerosis is a chronic autoimmune disease of the central nervous system characterized by multifocal demyelination. It manifests with a variety of neurological symptoms. The exact mechanism of multiple sclerosis pathogenesis is not fully understood, but genetic and environmental factors are believed to contribute to its development. Growing evidence suggests that a properly balanced diet may modulate the course of multiple sclerosis and alleviate its associated symptoms. Particularly promising are dietary strategies that support neuroprotective effects. It has also been observed that the exacerbation of certain multiple sclerosis symptoms may be linked to specific dietary components. Although their impact has not been definitively confirmed, it is believed that an appropriate nutritional therapy, which eliminates potentially harmful components, can improve patients’ overall health. Dietary recommendations should also take into account the current stage of disease progression and be tailored to the individual needs of each patient, considering factors such as sex, age, physical activity, and any comorbid conditions. Due to the limited number of clinical studies evaluating the effects of specific nutrients on the course of multiple sclerosis, more advanced research is needed to definitively determine whether an appropriately tailored diet can significantly influence disease progression.
Article Details
Copyright ? by Medical Education. All rights reserved.
References
2. McGinley MP, Goldschmidt CH, Rae-Grant AD. Diagnosis and Treatment of Multiple Sclerosis: A Review. JAMA. 2021; 325(8): 765-79.
3. Dighriri IM, Aldalbahi AA, Albeladi F et al. An Overview of the History, Pathophysiology, and Pharmacological Interventions of Multiple Sclerosis. Cureus. 2023; 15(1): e33242.
4. Zakrzewska-Pniewska B, Adamczyk-Sowa M, Brola W et al. Leczenie i postępowanie objawowe w stwardnieniu rozsianym Rekomendacje Sekcji SM i Neuroimmunologii Polskiego Towarzystwa Neurologicznego, Polski Przegląd Neurologiczny. 2019; 15(14): 191-217.
5. Bagur MJ, Murcia MA, Jiménez-Monreal AM et al. Influence of Diet in Multiple Sclerosis: A Systematic Review. Adv Nutr. 2017; 8(3): 463-72.
6. Stoiloudis P, Kesidou E, Bakirtzis C et al. The Role of Diet and Interventions on Multiple Sclerosis: A Review. Nutrients. 2022; 14(6): 1150.
7. Carbogno-Barnabe V, Łabuz-Roszak B. The role of diet in multiple sclerosis. Wiad Lek. 2022; 75(9 pt 1): 2131-5.
8. Zielińska M, Michońska I. Macronutrients, vitamins and minerals in the diet of multiple sclerosis patients. Postep Psychiatr Neurol. 2022; 31(3): 128-37.
9. Włodarek D, Lange E, Kozłowska L et al. Dietoterapia. Wydawnictwo Lekarskie PZWL, Warszawa 2015.
10. Jarosz M. Normy żywienia dla populacji polskiej. Instytut Żywności i Żywienia Warszawa 2017.
11. Koukach D, Aljumaily M, Al-Attiyah N et al. From prevention to management: Exploring the impact of diet on multiple sclerosis. Transl Neurosci. 2025; 16(1): 20250371.
12. Langer-Gould A, Black LJ, Waubant E et al. Seafood, fatty acid biosynthesis genes, and multiple sclerosis susceptibility. Mult Scler. 2020; 26(12): 1476-85.
13. Bjørnevik K, Chitnis T, Ascherio A et al. Polyunsaturated fatty acids and the risk of multiple sclerosis. Mult Scler. 2017; 23(14): 1830-8.
14. Chen L, Pang XW, Zhou LQ et al. Diet and the Risk of Multiple Sclerosis: Evidence with UK Biobank Nested Case-Control Study and Mendelian Randomization Analysis. Mol Nutr Food Res. 2025; 69(24): e70313.
15. Ramirez-Ramirez V, Macias-Islas M, Ortiz G et al. Efficacy of fish oil on serum of TNFα, IL-1β, and IL-6 oxidative stress markers in multiple sclerosis treated with interferon beta-1b. Oxid Med Cell Longev. 2013; 2013: 709493.
16. AlAmmar WA, Albeesh FH, Ibrahim LM et al. Effect of omega-3 fatty acids and fish oil supplementation on multiple sclerosis: a systematic review. Nutr Neurosci. 2021; 24(7): 569-79.
17. Sedighiyan M, Djafarian K, Dabiri S et al. The Effects of Omega-3 Supplementation on the Expanded Disability Status Scale and Inflammatory Cytokines in Multiple Sclerosis Patients: A Systematic Review and Meta-Analysis. CNS Neurol Disord Drug Targets. 2019; 18(7): 523-9.
18. Jelinek G, Hadgkiss E, Weiland T et al. Association of fish consumption and omega-3 supplementation with quality of life, disability and disease activity in an international cohort of people with multiple sclerosis. Int J Neurosci. 2013; 123(11): 792-801.
19. Tredinnick AR, Probst YC. Evaluating the Effects of Dietary Interventions on Disease Progression and Symptoms of Adults with Multiple Sclerosis: An Umbrella Review. Adv Nutr. 2020; 11(6): 1603-15.
20. Weinstock-Guttman B, Zivadinov R, Mahfooz N et al. Serum lipid profiles are associated with disability and MRI outcomes in multiple sclerosis. J Neuroinflammation. 2011; 8: 127.
21. Tettey P, Simpson S, Taylor B et al. An adverse lipid profile and increased levels of adiposity significantly predict clinical course after a first demyelinating event. J Neurol Neurosurg Psychiatry. 2017; 88(5): 395-401.
22. Riccio P, Rossano R. Nutrition facts in multiple sclerosis. ASN Neuro. 2015; 7(1): 1759091414568185.
23. Katz Sand I. The Role of Diet in Multiple Sclerosis: Mechanistic Connections and Current Evidence. Curr Nutr Rep. 2018; 7(3): 150-60.
24. Simpson S Jr, Blizzard L, Otahal P et al. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis J Neurol Neurosurg Psychiatry. 2011; 82: 1132-41.
25. Pierrot-Deseilligny C, Souberbielle JC. Vitamin D and multiple sclerosis: An update. Mult Scler Relat Disord. 2017; 14: 35-45.
26. Thouvenot E, Laplaud D, Lebrun-Frenay C et al. High-Dose Vitamin D in Clinically Isolated Syndrome Typical of Multiple Sclerosis: The D-Lay MS Randomized Clinical Trial. JAMA. 2025; 333: 1413.
27. Serag I, Abouzid M, Alsaadany KR et al. Role of vitamin D as adjuvant therapy on multiple sclerosis: an updated systematic review and meta-analysis of randomized controlled trials. Eur J Med Res. 2025; 30(1): 736.
28. Amirinejad R, Shirvani-Farsani Z, Naghavi Gargari B et al. Vitamin D Changes Expression of DNA Repair Genes in the Patients with Multiple Sclerosis. Gene. 2021; 781: 145488.
29. Spiezia AL, Falco F, Manganelli A et al. Low Serum 25-Hydroxy-Vitamin D Levels Are Associated with Cognitive Impairment in Multiple Sclerosis. Mult Scler Relat Disord. 2023; 79: 105044.
30. Pietruszkiewicz J, Mrozek K, Zwierz M et al. The Neuroprotective Potential of Vitamin D3. Nutrients. 2025; 17(20): 3202.
31. Farina G, Crescioli C. Vitamin D Associated with Exercise Can Be Used as a Promising Tool in Neurodegenerative Disease Protection. Molecules. 2025; 30(18): 3823.
32. Atabilen B, Akdevelioğlu Y, Acar Özen P et al. Examining dietary habits in the context of multiple sclerosis: A comprehensive investigative approach. Mult Scler Relat Disord. 2024; 83: 105467.
33. Abbasi H, Allogmanny S, Khoshdooz S et al. Exploring the Link of Serum Vitamin B12, Folate, and Homocysteine Concentrations in Individuals with Multiple Sclerosis: An Umbrella Meta-analysis of Case-control Studies. Neuroscience. 2025; 583: 179-86.
34. Dardiotis E, Arseniou S, Sokratous M et al. Vitamin B12, folate, and homocysteine levels and multiple sclerosis: A meta-analysis. Mult Scler Relat Disord. 2017; 17: 190-7.
35. Kocer B, Engur S, Ak F et al. Serum vitamin B12, folate, and homocysteine levels and their association with clinical and electrophysiological parameters in multiple sclerosis. J Clin Neurosci. 2009; 16(3): 399-403.
36. Najafi MR, Shaygannajad V, Mirpourian M et al. Vitamin B(12) Deficiency and Multiple Sclerosis; Is there Any Association? Int J Prev Med. 2012; 3(4): 286-9.
37. Pan L, Yin Y, Chen J et al. Homocysteine, vitamin B12, and folate levels in patients with multiple sclerosis in Chinese population: A case-control study and meta-analysis. Mult Scler Relat Disord. 2019; 36: 101395.
38. Fahmy EM, Elfayoumy NM, Abdelalim A et al. Relation of serum levels of homocysteine, vitamin B12 and folate to cognitive functions in multiple sclerosis patients. Int J Neurosci. 2018; 128(9): 835-41.
39. Nozari E, Ghavamzadeh S, Razazian N. The Effect of Vitamin B12 and Folic Acid Supplementation on Serum Homocysteine, Anemia Status and Quality of Life of Patients with Multiple Sclerosis. Clin Nutr Res. 2019; 8(1): 36-45.
40. Zuliani C, Baroni L. Chapter 35. Antioxidants for the Prevention and Treatment of Multiple Sclerosis: An Overview. In: Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease Prevention and Therapy. Watson RR, Preedy VR (eds.). Academic Press, London 2015: 341-353.
41. Mochol M, Jablonowski L, Pawlik A et al. The Role of Vitamin C in Selected Autoimmune and Immune-Mediated Diseases: Exploring Potential Therapeutic Benefits. Int J Mol Sci. 2025; 26(19): 9375.
42. Kocot J, Luchowska-Kocot D, Kiełczykowska M et al. Does Vitamin C Influence Neurodegenerative Diseases and Psychiatric Disorders. Nutrients. 2017; 9: 659.
43. Bufka J, Vaňková L, Sýkora J et al. Exploring carotenoids: Metabolism, antioxidants, and impacts on human health. J Funct Foods. 2024; 118: 106284.
44. Eggersdorfer M, Wyss A. Carotenoids in human nutrition and health. Arch Biochem Biophys. 2018; 652: 18-26.
45. Manochkumar J, Doss CGP, El-Seedi HR et al. The neuroprotective potential of carotenoids in vitro and in vivo. Phytomedicine. 2021; 91: 153676.
46. Nadimi E, Jamal Omidi S, Ghasemi M et al. Carotenoids as neuroprotective agents in multiple sclerosis: Pathways, mechanisms, and clinical prospects. Biomed Pharmacother. 2025; 191: 118496.
47. Martell SG, Kim J, Cannavale CN et al. Randomized, Placebo-Controlled, Single-Blind Study of Lutein Supplementation on Carotenoid Status and Cognition in Persons with Multiple Sclerosis. J Nutr. 2023; 153(8): 2298-311.
48. Saboor-Yaraghi AA, Harirchian MH, Mohammadzadeh Honarvar N et al. The Effect of Vitamin A Supplementation on FoxP3 and TGF-β Gene Expression in Avonex-Treated Multiple Sclerosis Patients. J Mol Neurosci. 2015; 56(3): 608-12.
49. Miller ED, Dziedzic A, Saluk-Bijak J et al. A Review of Various Antioxidant Compounds and their Potential Utility as Complementary Therapy in Multiple Sclerosis. Nutrients. 2019; 11(7): 1528.
50. Bayat P, Farshchi M, Yousefian M et al. Flavonoids, the compounds with anti-inflammatory and immunomodulatory properties, as promising tools in multiple sclerosis (MS) therapy: A systematic review of preclinical evidence. Int Immunopharmacol. 2021; 95: 107562.
51. Khosravi-Largani M, Pourvali-Talatappeh P, Rousta AM et al. A review on potential roles of vitamins in incidence, progression, and improvement of multiple sclerosis. eNeurologicalSci. 2018; 10: 37-44.
52. Enders M, Heider T, Ludwig A et al. Strategies for Neuroprotection in Multiple Sclerosis and the Role of Calcium. Int J Mol Sci. 2020; 21(5): 1663.
53. Fiorella S, Agherbi H, Houjeiry E et al. Personalized dietary advices provided by a dietitian increase calcium intake in outpatients with multiple sclerosis – Results from a randomized, controlled, single-blind trial. Front Nutr. 2023; 9: 919336.
54. Yazdan Panah M, Vaheb S, Moases Ghaffary E et al. Bone loss and fracture in people with multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord. 2024; 90: 105773.
55. Castro ÁDS, Albuquerque LDS, Melo MLP et al. Relationship between zinc-related nutritional status and the progression of multiple sclerosis. Mult Scler Relat Disord. 2022; 66: 104063.
56. Bredholt M, Frederiksen JL. Zinc in Multiple Sclerosis: A Systematic Review and Meta-Analysis. ASN Neuro. 2016; 8(3): 1759091416651511.
57. Alizadeh A, Mehrpour O, Nikkhah K et al. Comparison of serum Concentration of Se, Pb, Mg, Cu, Zn, between MS patients and healthy controls. Electron Physician. 2016; 8(8): 2759-64.
58. Nirooei E, Kashani SMA, Owrangi S et al. Blood Trace Element Status in Multiple Sclerosis: a Systematic Review and Meta-analysis. Biol Trace Elem Res. 2022; 200(1): 13-26.
59. Pawlitzki M, Uebelhör J, Sweeney-Reed CM et al. Lower Serum Zinc Levels in Patients with Multiple Sclerosis Compared to Healthy Controls. Nutrients. 2018; 10(8): 967.
60. Cortese M, Chitnis T, Ascherio A et al. Total intake of different minerals and the risk of multiple sclerosis. Neurology. 2019; 92(18): e2127-35.
61. Maier JAM, Locatelli L, Fedele G et al. Magnesium and the Brain: A Focus on Neuroinflammation and Neurodegeneration. Int J Mol Sci. 2022; 24(1): 223.
62. Zhong G, Wang X, Li J et al. Insights into the Role of Copper in Neurodegenerative Diseases and the Therapeutic Potential of Natural Compounds. Curr Neuropharmacol. 2024; 22(10): 1650-71.
63. Sarmadi M, Bidel Z, Najafi F et al. Copper concentration in multiple sclerosis: a systematic review and meta-analysis. Mult Scler Relat Disord. 2020; 45: 102426.
64. Colombo E, Triolo D, Bassani C et al. Dysregulated copper transport in multiple sclerosis may cause demyelination via astrocytes. Proc Natl Acad Sci USA. 2021; 118(27): e2025804118.
65. de Oliveira M, Gianeti TMR, da Rocha FCG et al. A preliminary study of the concentration of metallic elements in the blood of patients with multiple sclerosis as measured by ICP-MS. Sci Rep. 2020; 10(1): 13112.
66. Rahmani M, Pakkhesal S, Baharomid S et al. Shining a Light on Selenium: a Meta-analysis of Supplementation in Multiple Sclerosis. Biol Trace Elem Res. 2024; 202(10): 4375-86.
67. Zierfuss B, Wang Z, Jackson AN et al. Iron in multiple sclerosis – Neuropathology, immunology, and real-world considerations. Mult Scler Relat Disord. 2023; 78: 104934.
68. Riedl CJ, Bormann D, Steinmaurer A et al. Inflammation alters myeloid cell and oligodendroglial iron-handling in multiple sclerosis. Acta Neuropathol Commun. 2025; 13: 124.
69. Bjørklund G, Wallace DR, Hangan T et al. Cerebral iron accumulation in multiple sclerosis: Pathophysiology and therapeutic implications. Autoimmun Rev. 2025; 24(4): 103741.
70. Kłodnicka K, Januszewski J, Forma A et al. Iron in multiple sclerosis – from pathophysiology to disease progression – a narrative literature review. Acta Neurobiol Exp (Wars). 2025; 85(2): 75-93.
71. Tang C, Yang J, Zhu C et al. Iron metabolism disorder and multiple sclerosis: a comprehensive analysis. Front Immunol. 2024; 15: 1376838.
72. Zalecenia żywieniowe w diecie środziemnomorskiej.
73. Finicelli M, Di Salle A, Galderisi U et al. The Mediterranean Diet: An Update of the Clinical Trials. Nutrients. 2022; 14(14): 2956.
74. Abbasi H, Shakouri F, Mosaddeghi-Heris R et al. Mediterranean-like diets in multiple sclerosis: A systematic review. Rev Neurol (Paris). 2024; 180(10): 1021-103 .
75. Ertaş Öztürk Y, Helvaci EM, Sökülmez Kaya P et al. Is Mediterranean diet associated with multiple sclerosis related symptoms and fatigue severity? Nutr Neurosci. 2023; 26(3): 228-34.
76. Mousavi-Shirazi-Fard Z, Mazloom Z, Izadi S et al. The effects of modified anti-inflammatory diet on fatigue, quality of life, and inflammatory biomarkers in relapsing-remitting multiple sclerosis patients: a randomized clinical trial. Int J Neurosci. 2020; 131(7): 657-65.
77. Moravejolahkami AR, Paknahad Z, Chitsaz A et al. Potential of modified Mediterranean diet to improve quality of life and fatigue severity in multiple sclerosis patients: a single-center randomized controlled trial. International Journal of Food Properties. 2020; 23(1): 1993-2004.
78. Di Majo D, Cacciabaudo F, Accardi G et al. Ketogenic and Modified Mediterranean Diet as a Tool to Counteract Neuroinflammation in Multiple Sclerosis: Nutritional Suggestions. Nutrients. 2022; 14: 2384.
79. Jang J, Kim SR, Lee JE et al. Molecular Mechanisms of Neuroprotection by Ketone Bodies and Ketogenic Diet in Cerebral Ischemia and Neurodegenerative Diseases. Int J Mol Sci. 2023; 25(1): 124.
80. Kakde SP, Qadeer A, Khalil M et al. Safety and Efficacy of Ketogenic Diet in the Management of Multiple Sclerosis: A Systematic Review. Cureus. 2025; 17(8): e89965.
81. Dyńka D, Kowalcze K, Paziewska A. The Role of Ketogenic Diet in the Treatment of Neurological Diseases. Nutrients. 2022; 14(23): 5003.
82. Lin WS, Lin SJ, Liao PY et al. Role of Ketogenic Diets in Multiple Sclerosis and Related Animal Models: An Updated Review. Adv Nutr. 2022; 13(5): 2002-14.
83. Bock M, Steffen F, Zipp F et al. Impact of Dietary Intervention on Serum Neurofilament Light Chain in Multiple Sclerosis. Neurol Neuroimmunol Neuroinflamm. 2022; 9(1): e1102.
84. Brenton JN, Lehner-Gulotta D, Woolbright E et al. Phase II study of ketogenic diets in relapsing multiple sclerosis: safety, tolerability and potential clinical benefits. J Neurol Neurosurg Psychiatry. 2022; 93(6): 637-44.
85. Lee JE, Titcomb TJ, Bisht B et al. A Modified MCT-Based Ketogenic Diet Increases Plasma β-Hydroxybutyrate but Has Less Effect on Fatigue and Quality of Life in People with Multiple Sclerosis Compared to a Modified Paleolithic Diet: A Waitlist-Controlled, Randomized Pilot Study. J Am Coll Nutr. 2021; 40(1): 13-25.
86. Bahr LS, Bellmann-Strobl J, Koppold DA et al. Fasting, ketogenic, and anti-inflammatory diets in multiple sclerosis: a randomized controlled trial with 18-month follow-up. BMC Nutr. 2025; 11(1): 167.
87. Ortí JER, Cuerda-Ballester M, Sanchis-Sanchis CE et al. Exploring the impact of ketogenic diet on multiple sclerosis: obesity, anxiety, depression, and the glutamate system. Front Nutr. 2023; 10: 1227431 .
88. Zalecenia żywieniowe przy zaparciach. Narodowe Centrum Edukacji Żywieniowej.
89. Zalecenia żywieniowe przy biegunkach. Narodowe Cenrtum Edukacji Żywieniowej.