Terapia stwardnienia rozsianego w populacji pediatrycznej – aktualne koncepcje Artykuł przeglądowy

##plugins.themes.bootstrap3.article.main##

Mariusz Stasiołek

Abstrakt

Stwardnienie rozsiane o początku w populacji pediatrycznej pozostaje istotnym wyzwaniem nowoczesnej neurologii zarówno w zakresie diagnostyki, jak i terapii modyfikującej przebieg choroby. Postępowanie u dzieci i młodzieży ze stwardnieniem rozsianym oparte jest w dużej mierze na ekstrapolacji danych uzyskanych w populacji dorosłych. W ostatnich latach obserwuje się jednak istotny postęp w zakresie wiedzy i doświadczenia klinicznego, w tym pochodzącego z randomizowanych badań klinicznych prowadzonych w grupie pacjentów pediatrycznych. Powinno to skutkować stopniową poprawą odległych efektów terapeutycznych u pediatrycznych pacjentów ze stwardnieniem rozsianym.

##plugins.themes.bootstrap3.article.details##

Dział
Artykuły

Bibliografia

1. Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple Sclerosis: Mechanisms and Immunotherapy. Neuron. 2018; 97: 742-68.
2. Thompson AJ, Baranzini SE, Geurts J et al. Multiple sclerosis. Lancet. 2018; 391: 1622-36.
3. Stasiolek M. The role of selected immunoregulatory cell populations in autoimmune demyelination. Neuro Endocrinol Lett. 2011; 32(1): 25-33.
4. Stasiołek M. Agresywna postać stwardnienia rozsianego. Neurologia po Dyplomie. 2022; 3(17): 16-22.
5. Ruet A. Update on pediatric-onset multiple sclerosis. Rev Neurol (Paris). 2018; 174(6): 398-407.
6. Stasiołek M. Choroby demielinizacyjne OUN. In: Steinborn B (ed). Neurologia wieku rozwojowego. Wydawnictwo Lekarskie PZWL 2017: 83-108.
7. Chitnis T, Aaen G, Belman A et al.; US Network of Paediatric Multiple Sclerosis Centers. Improved relapse recovery in paediatric compared to adult multiple sclerosis. Brain. 2020; 143(9): 2733-41.
8. Otallah S, Banwell B. Pediatric Multiple Sclerosis: an Update. Curr Neurol Neurosci Rep. 2018; 18(11): 76.
9. Aubert-Broche B, Fonov V, Narayanan S et al.; Canadian Pediatric Demyelinating Disease Network. Onset of multiple sclerosis before adulthood leads to failure of age-expected brain growth. Neurology. 2014; 83(23): 2140-6.
10. Renoux C, Vukusic S, Mikaeloff Y et al.; Adult Neurology Departments KIDMUS Study Group. Natural history of multiple sclerosis with childhood onset. N Engl J Med. 2007; 356(25): 2603-13.
11. McKay KA, Hillert J, Manouchehrinia A. Long-term disability progression of pediatric-onset multiple sclerosis. Neurology. 2019; 92(24): e2764-e2773.
12. Ruano L, Branco M, Portaccio E et al. Patients with paediatric-onset multiple sclerosis are at higher risk of cognitive impairment in adulthood: An Italian collaborative study. Mult Scler. 2018; 24(9): 1234-42.
13. McKay KA, Friberg E, Razaz N et al. Long-term Socioeconomic Outcomes Associated With Pediatric-Onset Multiple Sclerosis. JAMA Neurol. 2021; 78(4): 478-82.
14. Banwell B, Kennedy J, Sadovnick D et al. Incidence of acquired demyelination of the CNS in Canadian children. Neurology. 2009; 72(3): 232-9.
15. Weygandt M, Hummel HM, Schregel K et al. MRI-based diagnostic biomarkers for early onset pediatric multiple sclerosis. Neuroimage Clin. 2014; 7: 400-8.
16. De Meo E, Filippi M, Trojano M et al. Comparing Natural History of Early and Late Onset Pediatric Multiple Sclerosis. Ann Neurol. 2022; 91(4): 483-95.
17. Dobson R, Giovannoni G. Multiple sclerosis – a review. Eur J Neurol. 2019; 26(1): 27-40.
18. Filippi M, Danesi R, Derfuss T et al. Early and unrestricted access to high-efficacy disease-modifying therapies: a consensus to optimize benefits for people living with multiple sclerosis. J Neurol. 2022; 269(3): 1670-7.
19. Ghezzi A, Amato MP, Annovazzi P et al.; ITEMS (Immunomodulatory Treatment of Early-onset MS) Group. Long-term results of immunomodulatory treatment in children and adolescents with multiple sclerosis: the Italian experience. Neurol Sci. 2009; 30(3): 193-9.
20. Tenembaum SN, Banwell B, Pohl D et al.; REPLAY Study Group. Subcutaneous interferon Beta-1a in pediatric multiple sclerosis: a retrospective study. J Child Neurol. 2013; 28(7): 849-56.
21. Chitnis T, Tenembaum S, Banwell B et al.; International Pediatric Multiple Sclerosis Study Group. Consensus statement: evaluation of new and existing therapeutics for pediatric multiple sclerosis. Mult Scler. 2012; 18(1): 116-27.
22. Krysko KM, Graves J, Rensel M et al.; US Network of Pediatric MS Centers. Use of newer disease-modifying therapies in pediatric multiple sclerosis in the US. Neurology. 2018; 91(19): e1778-e1787.
23. Alroughani R, Huppke P, Mazurkiewicz-Beldzinska M et al. Delayed-Release Dimethyl Fumarate Safety and Efficacy in Pediatric Patients With Relapsing-Remitting Multiple Sclerosis. Front Neurol. 2021; 11: 606418.
24. Ghezzi A, Moiola L, Pozzilli C et al.; MS Study Group-Italian Society of Neurology. Natalizumab in the pediatric MS population: results of the Italian registry. BMC Neurol. 2015; 15: 174.
25. Ghezzi A, Banwell B, Bar-Or A et al. Rituximab in patients with pediatric multiple sclerosis and other demyelinating disorders of the CNS: Practical considerations. Mult Scler. 2021; 27(12): 1814-22.
26. Margoni M, Rinaldi F, Miante S et al. Alemtuzumab following natalizumab in highly active paediatric-onset multiple sclerosis. Mult Scler J Exp Transl Clin. 2019; 5(3): 2055217319875471.
27. Stasiołek M, Połatyńska K. Przyszłość terapii stwardnienia rozsianego u dzieci i młodzieży. Child Neurology (Neurologia Dziecięca). 2015; 24(49): 37-44.
28. Waubant E, Banwell B, Wassmer E et al.; IPMSSG. Clinical trials of disease-modifying agents in pediatric MS: Opportunities, challenges, and recommendations from the IPMSSG. Neurology. 2019; 92(22): e2538-e2549.
29. Schwartz CE, Grover SA, Powell VE et al. Risk factors for non-adherence to disease-modifying therapy in pediatric multiple sclerosis. Mult Scler. 2018; 24(2): 175-85.
30. Duffy LV, Sarill K, Forbes P et al. Shared Decision Making and Disease Modifying Therapy in Families of Children and Adolescents with Pediatric Onset Multiple Sclerosis. J Pediatr Nurs. 2021; 61: 404-9.
31. Chitnis T, Arnold DL, Banwell B et al.; PARADIGMS Study Group. Trial of Fingolimod versus Interferon Beta-1a in Pediatric Multiple Sclerosis. N Engl J Med. 2018; 379(11): 1017-27.
32. Deiva K, Huppke P, Banwell B et al. Consistent control of disease activity with fingolimod versus IFN β-1a in paediatric-onset multiple sclerosis: further insights from PARADIGMS. J Neurol Neurosurg Psychiatry. 2020; 91(1): 58-66.
33. Cohen JA, Barkhof F, Comi G et al.; TRANSFORMS Study Group. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010; 362(5): 402-15.
34. Chitnis T, Banwell B, Kappos L et al.; TERIKIDS Investigators. Safety and efficacy of teriflunomide in paediatric multiple sclerosis (TERIKIDS): a multicentre, double-blind, phase 3, randomised, placebo-controlled trial. Lancet Neurol. 2021; 20(12): 1001-11.
35. Sormani MP, Waubant E. Paediatric multiple sclerosis: a lesson from TERIKIDS. Lancet Neurol. 2021; 20(12): 971-3.
36. Jakimovski D, Awan S, Eckert SP et al. Multiple Sclerosis in Children: Differential Diagnosis, Prognosis, and Disease-Modifying Treatment. CNS Drugs. 2022; 36(1): 45-59.
37. Krysko KM, Graves JS, Rensel M et al.; US Network of Pediatric MS Centers. Real-World Effectiveness of Initial Disease-Modifying Therapies in Pediatric Multiple Sclerosis. Ann Neurol. 2020; 88(1): 42-55.
38. Abdel-Mannan OA, Manchoon C, Rossor T et al.; UK-Childhood Inflammatory Disease Network. Use of Disease-Modifying Therapies in Pediatric Relapsing-Remitting Multiple Sclerosis in the United Kingdom. Neurol Neuroimmunol Neuroinflamm. 2021; 8(4): e1008.
39. Baroncini D, Simone M, Iaffaldano P et al.; Italian MS registry. Risk of Persistent Disability in Patients With Pediatric-Onset Multiple Sclerosis. JAMA Neurol. 2021; 78(6): 726-35.
40. Kopp TI, Blinkenberg M, Petersen T et al. Long term effect of delayed treatment on disability in patients with paediatric onset multiple sclerosis: A prospective Danish cohort study. Mult Scler Relat Disord. 2020; 40: 101956.
41. Iaffaldano P, Simone M, Lucisano G et al.; Italian iMedWeb Registry and the MSBase Registry. Prognostic indicators in pediatric clinically isolated syndrome. Ann Neurol. 2017; 81(5): 729-39.
42. He A, Merkel B, Brown JWL et al.; MSBase Study Group. Timing of high-efficacy therapy for multiple sclerosis: a retrospective observational cohort study. Lancet Neurol. 2020; 19(4): 307-16.
43. Brown JWL, Coles A, Horakova D et al.; MSBase Study Group. Association of Initial Disease-Modifying Therapy With Later Conversion to Secondary Progressive Multiple Sclerosis. JAMA. 2019; 321(2): 175-87.
44. Margoni M, Rinaldi F, Riccardi A et al. No evidence of disease activity including cognition (NEDA-3 plus) in naïve pediatric multiple sclerosis patients treated with natalizumab. J Neurol. 2020; 267(1): 100-5.
45. De Meo E, Bonacchi R, Moiola L et al. Early Predictors of 9-Year Disability in Pediatric Multiple Sclerosis. Ann Neurol. 2021; 89(5): 1011-22.
46. Sandesjö F, Wassmer E, Deiva K et al. Current international trends in the treatment of multiple sclerosis in children-Impact of the COVID-19 pandemic. Mult Scler Relat Disord. 2021; 56: 103277.