Szlaki sygnałowe mTOR w patogenezie i leczeniu nowotworów neuroendokrynnych Review article

##plugins.themes.bootstrap3.article.main##

Agnieszka Kolasińska-Ćwikła

Abstrakt

Nowotwory neuroendokrynne to heterogenna grupa nowotworów, która u większości chorych w chwili rozpoznania jest w stadium zaawansowanym lub przerzutowym, uniemożliwiającym radykalne leczenie chirurgiczne. Szlaki sygnałowe mTOR odgrywają istotną rolę w patogenezie nowotworów neuroendokrynnych i obecnie uważa się je za ważny cel leczenia z wykorzystaniem leków celowanych molekularnie.

Pobrania

Dane pobrania nie są jeszcze dostepne

##plugins.generic.paperbuzz.metrics##

##plugins.generic.paperbuzz.loading##

##plugins.themes.bootstrap3.article.details##

Jak cytować
1.
Kolasińska-Ćwikła A. Szlaki sygnałowe mTOR w patogenezie i leczeniu nowotworów neuroendokrynnych. OncoReview [Internet]. 4 marzec 2016 [cytowane 23 listopad 2024];6(1(21):37-2. Dostępne na: https://journalsmededu.pl/index.php/OncoReview/article/view/476
Dział
Artykuły

Bibliografia

1. Yao JC, Hassan M, Phan A et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 2008; 26: 3063-3072.
2. Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer 2003; 97: 934-959.
3. Basu B, Sirohi B, Corrie P. Systemic therapy for neuroendocrine tumours of gastroenteropancreatic origin. Endocr Relat Cancer 2010; 17: 75-90.
4. Plöckinger U, Rindi R, Arnold R. Guidelines for the Diagnosis and Treatment of Neuroendocrine Gastrointestinal Tumours. Neuroendocrinology 2004; 80: 394-424.
5. De Martino MC, van Koetsveld PM, Pivonello R et al. Role of the mTOR Pathway in Normal and Tumoral Adrenal Cells. Neuroendocrinology 2010; 92(suppl. 1): 28-34.
6. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2: 489-501.
7. White MF. The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol Cell Biochem 1998; 182: 3-11.
8. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature 2001; 411: 355-365.
9. Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell 2000; 103: 253-262.
10. Thomas G, Hall MN. TOR signalling and control of cell growth. Curr Opin Cell Biol 1997; 9: 782-787.
11. Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 2006; 5: 671-688.
12. Kim DH, Sarbassov DD, Ali SM et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002; 110: 163-175.
13. Kim DH, Sarbassov DD, Ali SM et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 2003; 11: 895-904.
14. Sarbassov DD, Ali SM, Kim DH et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004; 14: 1296-1302.
15. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of AKT/PKB by the rictor mTOR complex. Science 2005; 307: 1098-1101.
16. Guertin DA, Sabatini DM. An expanding role for mTOR in cancer. Trends Mol Med 2005; 11: 353-361.
17. Martin DE, Hall MN. The expanding TOR signaling network. Curr Opin Cell Biol 2005; 17: 158-166.
18. Garcia JA, Danielpour D. Mammalian target of rapamycin inhibtion as a therapeutic strategy in the management of urologic malignancies. Mol Cancer Ther 2008; 7(6): 1347-1354.
19. Manning BD, Cantley LC. United at last: the tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/AKT pathway to mammalian target of rapamycin (mTOR) signalling. Biochem Soc Trans 2003; 31(Pt 3): 573-578.
20. Jacinto E, Facchinetti V, Liu D. et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 2006; 127: 125-137.
21. Toschi A, Lee E, Gadir N. Differential dependence of hypoxia-inducible factors 1{alpha} and 2{alpha} on mTORC1 and mTORC2. J Biol Chem 2008; 283: 34495-34499.
22. Jiao Y, Shi C, Edil BH et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 2011; 331(6021): 1199-1203.
23. Missiaglia E, Dalai I, Barbi S et al. Pancreatic endocrine tumors: expression profiling evidences a role for AKT mTOR pathway. J Clin Oncol. 2010; 28(2): 245-255.
24. Briest F, Grabowski P. PI3K-AKT-mTOR-Signaling and beyond: the Complex Network in Gastroenteropancreatic Neuroendocrine Neoplasms Theranostics 2014; 4(4): 336-365.
25. Qian ZR, Ter-Minassian M, Chan JA et al. Prognostic significance of MTOR pathway component expression in neuroendocrine tumors. J Clin Oncol 2013; 31(27): 3418-3425.
26. Di Florio A, Sancho V, Moreno P. Gastrointestinal hormones stimulate growth of Foregut Neuroendocrine Tumors by transactivating the EGF receptor. Biochim Biophys Acta 2013; 1833: 573-582.
27. Krausch M, Raffel A, Anlauf M et al. Loss of PTEN expression in neuroendocrine pancreatic tumors. Horm Metab Res 2011; 43: 865-871.
28. Chung DC, Brown SB, Graeme-Cook F et al. Localization of putative tumor suppressor loci by genome-wide allelotyping in human pancreatic endocrine tumors. Cancer Res 1998; 58(16): 3706-3711.
29. Perren A, Komminoth P, Saremaslani P et al. Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. Am J Pathol 2000; 157(4): 1097-1103.
30. Kasajima A, Pavel M, Darb-Esfahani S et al. mTOR expression and activity patterns in gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer 2011; 18(1): 181-192.
31. Chan J, Kulke M. Targeting the mTOR Signaling Pathway in Neuroendocrine Tumors. Curr Treat Options Oncol 2014; 15: 365-379.
32. Lodish MB, Stratakis CA. Endocrine tumours in neurofibromatosis type 1, tuberous sclerosis and related syndromes. Best Pract Res Clin Endocrinol Metab 2010; 24(3): 439-449.
33. Regulska K, Stanisz B, Regulski M. Indywidualizacja terapii przeciwnowotworowej; molekularne uwarunkowania mechanizmów działania nowoczesnych leków onkologicznych. Post Hig Med Dosw 2012; 66: 855-867.
34. Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 2005; 55: 178-194.
35. Yao JC, Phan AT, Chang DZ et al. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol 2008; 26: 4311-4318.
36. Yao JC, Lombard-Bohas C, Baudin E et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol 2010; 28: 69-76.
37. Yao JC, Shah MH, Ito T et al.; RAD001 in Advanced Neuroendocrine Tumors, Third Trial (RADIANT-3) Study Group: Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 2011; 364: 514-523.
38. Yao J, Pavel M, Kunz T. Everolimus (EVE) for the treatment of advanced pancreatic neuroendocrine tumors (pNET): Final overall survival (OS) results of a randomized, double-blind, placebo (PBO)-controlled, multicenter Phase III trial (RADIANT-3), ESMO 2014: abstr. 1132O.
39. Pavel ME, Hainsworth JD, Baudin E; RADIANT-2 Study Group. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo controlled, phase 3 study. Lancet 2011; 378(9808): 2005-2012.
40. Fazio N, Granberg D, Grossman A et al. Everolimus plus octreotide long-acting repeatable in patients with advanced lung neuroendocrine tumors: analysis of the phase 3, randomized, placebo-controlled RADIANT2-study. Chest 2013; 143: 955-962.
41. Castellano D, Bajetta E, Panneerselvam A et al. Everolimus plus octreotide long-acting repeatable in patients with colorectal neuroendocrine tumors: a subgroup analysis of the phase III RADIANT-2 study. Oncologist 2013; 18(1): 46-53.
42. Yao JC, Fazio N, Singh S et al.; RAD001 in Advanced Neuroendocrine Tumours, Fourth Trial (RADIANT-4) Study Group. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet 2015 [pii: S0140-6736(15)00817-X].
43. Singh S, Carnaghi C, Buzzoni R et al. Efficacy and safety of everolimus in advanced, progressive, nonfunctional neuroendocrine tumors (NET) of the gastrointestinal (GI) tract and unknown primary: A subgroup analysis of the phase III RADIANT-4 trial. American Society of Clinical Oncology (ASCO) Gastrointestinal Cancers Symposium w San Francisco (2016; abstr. 315).