Pheochromocytoma i przyzwojak – praca przeglądowa Review article
##plugins.themes.bootstrap3.article.main##
Abstrakt
Guz chromochłonny wywodzi się z tkanki chromochłonnej, wydzielającej katecholaminy, które determinują charakterystyczny obraz kliniczny choroby. Poważne i potencjalnie śmiertelne powikłania sercowo-naczyniowe zmuszają do szybkiej diagnostyki i leczenia. Dostępne testy biochemiczne są zalecane nie tylko chorym z charakterystycznymi objawami klinicznymi, ale także wszystkim pacjentom z przypadkowo stwierdzonym guzem nadnercza. Rośnie częstość zdiagnozowanych mutacji germinalnych związanych z rodzinną postacią guza chromochłonnego wśród guzów uznawanych pierwotnie za postać sporadyczną, w związku z czym coraz częściej zalecenia wskazują na konieczność wykonywania badań genetycznych u wszystkich chorych z rozpoznanym pheochromocytoma lub paraganglioma. Leczenie chirurgiczne, które jest leczeniem z wyboru, przynosi bardzo dobre efekty w przypadku guzów łagodnych, a nawet złośliwych, jeśli są operacyjne. Niestety, chorzy z guzami złośliwymi nieoperacyjnymi lub z obecnością przerzutów nie mają dobrej ani skutecznej alternatywy leczenia.
Pobrania
##plugins.generic.paperbuzz.metrics##
##plugins.themes.bootstrap3.article.details##
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne 4.0 Międzynarodowe.
Copyright: © Medical Education sp. z o.o. This is an Open Access article distributed under the terms of the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). License (https://creativecommons.org/licenses/by-nc/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Address reprint requests to: Medical Education, Marcin Kuźma (marcin.kuzma@mededu.pl)
Bibliografia
2. Beard CM, Sheps SG, Kurland LT et al. Occurrence of pheochromocytoma in Rochester, Minnesota, 1950 through 1979. Mayo Clin Proc 1983; 58: 802-804.
3. Stenström G, Svärdsudd K. Pheochromocytoma in Sweden 1958-1981. An analysis of the National Cancer Registry Data. Acta Med Scand 1986; 220: 225-232.
4. Anderson GH Jr, Blakeman N, Streeten DH. The effect of age on prevalence of secondary forms of hypertension in 4429 consecutively referred patients. J Hypertens 1994; 12: 609-615.
5. Omura M, Saito J, Yamaguchi K et al. Prospective study on the prevalence of secondary hypertension among hypertensive patients visiting a general outpatient clinic in Japan. Hypertens Res 2004; 27: 193-202.
6. Sinclair AM, Isles CG, Brown I et al. Secondary hypertension in a blood pressure clinic. Arch Intern Med 1987; 147: 1289-1293.
7. Kasperlik-Zaluska AA, Roslonowska E, Slowinska-Srzednicka J et al. 1,111 patients with adrenal incidentalomas observed at a single endocrinological center: incidence of chromaffin tumors. Ann NY Acad Sci 2006; 1073: 38-46.
8. Babińska A, Siekierska-Hellmann M, Błaut K et al. Hormonal activity in clinically silent adrenal incidentalomas. Arch Med Sci 2012; 8: 97-103.
9. Babinska A, Sworczak K, Wisniewski P et al. The role of immunohistochemistry in histopathologial diagnostics of clinically “silent” incidentally detected adrenal masses. Exp Clin Endocrinol Diabetes 2008; 116: 246-251.
10. Ayala-Ramirez M, Feng L, Johnson MM et al. Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators. J Clin Endocrinol Metab 2011; 96: 717-725.
11. Parenti G, Zampetti B, Rapizzi E et al. Updated and new perspectives on diagnosis, prognosis, and therapy of malignant pheochromocytoma/ paraganglioma. J Oncol 2012. https://doi.org/10.1155/2012/872713.
12. Prejbisz A., Januszewicz A., Pęczkowska M. et al.: Wielka Interna. Zgliczyński W (ed). 1st edition. Medical Tribune Poland, Warsaw 2011.
13. Li W, Yang B, Che JP et al. Diagnosis and treatment of extra-adrenal pheochromocytoma of urinary bladder: case report and review. Int J Clin Exp Med 2013; 25: 832-839.
14. Lenders JW, Eisenhofer G, Mannelli M, Pacak K. Pheochromocytoma. Lancet 2005; 366: 665-675.
15. Mannelli M, Castellano M, Schiavi F et al. Clinically guided genetic screening in a large cohort of Italian patients with pheochromocytomas and/or functional or nonfunctional paragangliomas. J Clin Endocrinol Metab 2009; 94: 1541-1547.
16. Fishbein L, Merrill S, Fraker DL et al. Inherited mutations in pheochromocytoma and paraganglioma: why all patients should be offered genetic testing. Ann Surg Oncol 2013; 20: 1444-1450.
17. Burnichon N, Briere JJ, Libe R et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet 2010; 19: 3011-3020.
18. Astuti D, Latif F, Dallol A et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 2001; 69: 49-54.
19. Niemann S, Muller U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 2000; 26: 268-270.
20. Baysal BE, Ferrell RE, Willett-Brozick JE et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 2000; 287: 848-851.
21. Hao HX, Khalimonchuk O, Schraders M et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009; 325: 1139-1142.
22. Bayley JP, Kunst HP, Cascon A et al. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol 2010; 11: 366-372.
23. Qin Y, Yao L, King EE et al. Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat Genet 2010; 42: 229-233.
24. Comino-Mendez I, Gracia-Aznarez FJ, Schiavi F et al. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet 2011; 43: 663-667.
25. van Hulsteijn LT, Dekkers OM, Hes FJ et al. Risk of malignant paraganglioma in SDHB-mutation and SDHD-mutation carriers: a systematic review and meta-analysis. J Med Genet 2012; 49: 768-776.
26. Därr R, Lenders JW, Hofbauer LC et al. Pheochromocytoma – update on disease management. Ther Adv Endocrinol Metab 2012; 3: 11-26.
27. Rosas AL, Kasperlik-Zaluska AA, Papierska L et al. Pheochromocytoma crisis induced by glucocorticoids: a report of four cases and review of the literature. Eur J Endocrinol 2008; 158: 423-429.
28. Prejbisz A, Lenders JW, Eisenhofer G et al. Cardiovascular manifestation of phaeochromocytoma. A J Hypertens 2011; 29: 2049-60.
29. Babińska A, Gnacińska A, Świątkowska-Stodulska R et al. Myocardial infarction in a 30-year-old patient with pheochromocytoma and type 1 neurofibromatosis. Pol Arch Med Wewn 2008; 118: 517-523.
30. Manger WM. An overview of pheochromocytoma: history, current concepts, vagaries, and diagnostic challenges. Ann NY Acad Sci 2006; 1073: 1-20.
31. Eisenhofer G, Siegert G, Kotzerke J et al. Current progress and future challenges in the biochemical diagnosis and treatment of pheochromocytoma and paragangliomas. Horm Metab Res 2008; 40: 329-337.
32. Peitzsch M, Prejbisz A, Kroiß M et al. Analysis of plasma 3-methoxytyramine, normetanephrine and metanephrine by ultraperformance liquid
chromatography-tandem mass spectrometry: utility for diagnosis of dopamine-producing metastatic phaeochromocytoma. Ann Clin Biochem 2013; 50: 147-55.
33. Zielonko J, Studniark M, Rzepko R et al. Value of MRI in differentiating adrenal masses: Quantitative analysis of tumor signal intensity. Pol J Radiol 2008; 73: 7-12.
34. Rufini V, Treglia G, Castaldi P et al. Comparison of metaiodobenzylguanidine scintigraphy with positron emission tomography in the diagnostic work-up of pheochromocytoma and paraganglioma: a systematic review. Q J Nucl Med Mol Imaging 2013; 57: 122-33.
35. Fishbein L, Orlowski R, Cohen D. Pheochromocytoma/Paraganglioma: review of perioperative management of blood pressure and update on genetic mutations associated with pheochromocytoma. J Clin Hypertens 2013; 15: 428-434.
36. Tanabe A, Naruse M, Nomura K et al. Combination chemotherapy with cyclophosphamide, vincristine, and dacarbazine in patients with malignant pheochromocytoma and paraganglioma. Horm Cancer 2013; 4: 103-110.
37. Matro J, Giubellino A, Pacak K. Current and future therapeutic approaches for metastatic pheochromocytoma and paraganglioma: focus on SDHB tumors. Horm Metab Res 2013; 45: 147-153.
38. Martiniova L, Lu J, Chiang J et al. Pharmacologic modulation of serine/threonine phosphorylation highly sensitizes PHEO in a MPC cell and mouse model to conventional chemotherapy. PLoS ONE 2011; 6: e14678. https://doi.org/10.1371/journal.pone.0014678.
39. Fishbein L, Nathanson KL. Pheochromocytoma and paraganglioma: understanding the complexities of the genetic background. Cancer Genet 2012; 205: 1-11.