Targeted therapies for chronic myeloid leukemia and cardiovascular system Review article

##plugins.themes.bootstrap3.article.main##

Sebastian Szmit
Wiesław Wiktor Jędrzejczak
Adam Torbicki

Abstrakt

Zachorowania na przewlekłą białaczkę szpikową dotykają głównie osób starszych, u których występują istotne czynniki ryzyka miażdżycy, a często również organiczne choroby serca. Leki ukierunkowane molekularnie, takie jak imatynib, dazatynib i nilotynib, bardzo istotnie poprawiają rokowanie tej grupy chorych. Jednak podobne cele molekularne w postaci kinaz tyrozynowych są także istotne dla prawidłowej funkcji układu sercowo-naczyniowego i ich blokowanie może mieć niekorzystne skutki w tym układzie. Efektami klinicznymi są skurczowa niewydolność serca związana z terapią imatynibem, tętnicze nadciśnienie płucne związane z terapią dazatynibem oraz niedokrwienie kończyn związane z miażdżycą tętnic obwodowych obserwowane podczas terapii nilotynibem. Podkreśla się rolę odpowiedniego monitoringu kardiologicznego, zwłaszcza w podgrupach ze zdefiniowanymi czynnikami ryzyka powikłań.

Pobrania

Dane pobrania nie są jeszcze dostepne

##plugins.themes.bootstrap3.article.details##

Jak cytować
1.
Szmit S, Jędrzejczak WW, Torbicki A. Targeted therapies for chronic myeloid leukemia and cardiovascular system. OncoReview [Internet]. 1 październik 2013 [cytowane 10 styczeń 2025];3(3(11):163-76. Dostępne na: https://journalsmededu.pl/index.php/OncoReview/article/view/340
Dział
Artykuły

Bibliografia

1. Swords R., Mahalingam D., Padmanabhan S. et al.: Nilotinib: optimal therapy for patients with chronic myeloid leukemia and resistance or intolerance to imatinib. Drug Des. Devel. Ther. 2009; 3: 89-101.
2. National Cancer Institute. US National Institutes of Health: Surveillance Epidemiology and End Results web site: Finding Cancer Statistics: Cancer Stat Fact Sheets: Chronic Myeloid Leukemia. Online: http://seer.cancer.gov/statfacts/html/ cmyl.html (Access: 20.082008).
3. Rohrbacher M., Hasford J.: Epidemiology of chronic myeloid leukaemia (CML). Best Pract. Res. Clin. Haematol. 2009; 22(3): 295-302.
4. McDonald M., Hertz R.P., Unger A.N. et al.: Prevalence, awareness, and management of hypertension, dyslipidemia, and diabetes among United States adults aged 65 and older. J. Gerontol. A Biol. Sci. Med. Sci. 2009; 64(2): 256-63.
5. Pencina M.J., D’Agostino R.B. Sr, Larson M.G. et al.: Predicting the 30-year risk of cardiovascular disease: the Framingham Heart Study. Circulation 2009; 119(24): 3078-84.
6. Islam T.M., Fox C.S., Mann D. et al.: Age-related associations of hypertension and diabetes mellitus with chronic kidney disease. BMC Nephrol. 2009; 10: 17.
7. Coresh J., Selvin E., Stevens L.A. et al.: Prevalence of chronic kidney disease in the United States. JAMA 2007; 298(17): 2038-47.
8. Libby P.: Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 2001; 104(3): 365-72.
9. Strait J.B., Lakatta E.G.: Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail. Clin. 2012; 8(1): 143-64.
10. Tuzcu E.M., Kapadia S.R., Tutar E. et al.: High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation 2001; 103(22): 2705-10.
11. Cohen M.H., Williams G., Johnson J.R. et al.: Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin. Cancer Res. 2002; 8: 935-42.
12. Cheng H., Force T.: Why do kinase inhibitors cause cardiotoxicity and what can be done about it? Prog. Cardiovasc. Dis. 2010; 53(2): 114-20.
13. Cheng H., Force T.: Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics. Circ. Res. 2010; 106: 21-34.
14. Hasinoff B.B., Patel D.: The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro. Toxicol. Appl. Pharmacol. 2010; 249(2): 132-9.
15. Kerkela R., Grazette L., Yacobi R. et al.: Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat. Med. 2006; 12: 908-916.
16. Breccia M.: Is imatinib-related cardiotoxicity still an open issue? Leuk. Res. 2011; 35: 34-5.
17. Orphanos G.S., Ioannidis G.N., Ardavanis A.G.: Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncol. 2009; 48(7): 964-70.
18. Steinberg S.F.: Distinctive activation mechanisms and functions for protein kinase C delta. Biochem. J. 2004; 384: 449-59.
19. Park Y.H., Park H.J., Kim B.S. et al.: BNP as a marker of the heart failure in the treatment of imatinib mesylate. Cancer Lett. 2006; 243: 16-22.
20. Tiribelli M., Colatutto A., Marin L. et al.: Brain natriuretic peptide level as marker of cardiac function in imatinib-treated chronic myeloid leukemia patients: No evidence of cardiotoxicity of imatinib therapy. Am. J. Hematol. 2008; 83: 517-8.
21. Fernandez A., Sanguino A., Peng Z. et al.: An anticancer C-Kit kinase inhibitor is reengineered to make it more active and less cardiotoxic. J. Clin. Invest. 2007; 117: 4044-54.
22. Aoki H., Kang P.M., Hampe J. et al.: Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes. J. Biol. Chem. 2002; 277: 10244-50.
23. Francis J., Ahluwalia M.S., Wetzler M. et al.: Reversible cardiotoxicity with tyrosine kinase inhibitors. Clin. Adv. Hematol. Oncol. 2010; 8(2): 128-32.
24. Kantarjian H., Pasquini R., Hamerschlak N. et al.: Dasatinib or high-dose imatinib for chronic-phase chronic myeloid leukemia after failure of first-line imatinib: A randomized phase 2 trial. Blood 2007; 109: 5143-50.
25. Cortes J., Kim D.W., Raffoux E. et al.: Efficacy and safety of dasatinib in imatinib-resistant or -intolerant patients with chronic myeloid leukemia in blast phase. Leukemia 2008; 22(12): 2176-83.
26. Talpaz M., Shah N., Kantarjian H. et al.: Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N. Engl. J. Med. 2006; 354: 2531-41.
27. Masiello D., Gorospe G. 3rd, Yang A.S.: The occurrence and management of fluid retention associated with TKI therapy in CML, with a focus on dasatinib. J. Hematol. Oncol. 2009; 2: 46.
28. Brixey A.G., Light R.W.: Pleural effusions due to dasatinib. Curr. Opin. Pulm. Med. 2010; 16(4): 351-6.
29. Quintás-Cardama A., Kantarjian H., O’Brien S. et al.: Pleural effusion in patients with chronic myelogenous leukemia treated with dasatinib after imatinib failure. J. Clin. Oncol. 2007; 25(25): 3908-14.
30. Goldblatt M., Huggins J.T., Doelken P. et al.: Dasatinib-induced pleural effusions: a lymphatic network disorder? Am. J. Med. Sci. 2009; 338(5): 414-7.
31. Kim D., Goh H.G., Kim S.H. et al.: Long-term pattern of pleural effusion from chronic myeloid leukemia patients in second-line dasatinib therapy. Int. J. Hematol. 2011; 94(4): 361-71.
32. Breccia M., Alimena G.: Pleural/pericardic effusions during dasatinib treatment: incidence, management and risk factors associated to their development. Expert Opin. Drug Saf. 2010; 9(5): 713-21.
33. Krauth M.T., Herndlhofer S., Schmook M.T. et al.: Extensive pleural and pericardial effusion in chronic myeloid leukemia during treatment with dasatinib at 100 mg or 50 mg daily. Haematologica 2011; 96(1): 163-6.
34. Tinsley S.M.: Safety profiles of second-line tyrosine kinase inhibitors in patients with chronic myeloid leukaemia. J. Clin. Nurs. 2010; 19(9-10): 1207-18.
35. Wolf A., Couttet P., Dong M. et al.: Preclinical evaluation of potential nilotinib cardiotoxicity. Leuk. Res. 2011; 35(5): 631-7.
36. Kantarjian H., Hochhaus A., Saglio G. et al.: Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukemia: 24-month minimum follow-up of the phase 3 randomised ENESTnd trial. Lancet Oncol. 2011; 12: 841-51.
37. Haverkamp W., Breithardt G., Camm A.J. et al.: The potential for QT prolongation and proarrhythmia by non-antiarrhythmic drugs: clinical and regulatory implications. Report on a policy conference of the European Society of Cardiology. Eur. Heart J. 2000; 21(15): 1216- 31.
38. Strevel E.L., Ing D.J., Siu L.L.: Molecularly targeted oncology therapeutics and prolongation of the QT interval. J. Clin. Oncol. 2007; 25(22): 3362-71.
39. Breccia M., Efficace F., Alimena G.: Progressive arterial occlusive disease (PAOD) and pulmonary hypertension (PAH) as new adverts events of second generation TKIs in CML treatment: who’s afraid of the big bad wolf? Leuk. Res. 2012; 36: 813-814.
40. Breccia M., Alimena G.: Occurrence and current management of side effects in chronic myeloid leukemia patients treated frontline with tyrosine kinase inhibitors. Leuk. Res. 2013; 37(6): 713-20.
41. Humbert M., Simonneau G., Dinh-Xuan A.T.: Whistleblowers. Eur. Respir. J. 2011; 38(3): 510-1.
42. EMEA: Sprycel-Scientific discussion. European Public Assessment Report (EPAR 2011).
43. Kantarjian H., Shah N.P., Cortes J.E. et al.: Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: 2-year follow-up from a randomized phase 3 trial (DASISION). Blood 2012; 119: 1123-9.
44. Montani D., Bergot E., Günther S. et al.: Pulmonary arterial hypertension in patients treated by dasatinib. Circulation 2012; 125: 2128-2137.
45. Rasheed W., Flaim B., Seymour J.F.: Reversible severe pulmonary hypertension secondary to dasatinib in a patient with chronic myeloid leukemia. Leuk. Res. 2009; 33: 861-4.
46. Mattei D., Feola M., Orzan F. et al.: Reversible dasatinib-induced pulmonary arterial hypertension and right ventricle failure in a previously allografted CML patient. Bone Marrow Transplant. 2009; 43: 967-8.
47. Dumitrescu D., Seck C., ten Freyhaus H. et al.: Fully reversible pulmonary arterial hypertension associated with dasatinib treatment for chronic myeloid leukemia. Eur. Respir. J. 2011; 38: 218-20.
48. Hennigs J.K., Keller G., Baumann H.J. et al.: Multi tyrosine kinase inhibitor dasatinib as novel cause of severe pre-capillary pulmonary hypertension? BMC Pulm. Med. 2011; 23: 11-30.
49. Orlandi E.M., Rocca B., Pazzano A.S. et al.: Reversible pulmonary arterial hypertension likely related to long-term, low dose dasatinib treatment for chronic myeloid leukemia. Leuk. Res. 2012; 36: e4-6.
50. Patkowska E., Lech-Marańda E., Darocha S. et al.: Odwracalne tętnicze nadciśnienie płucne jako powikłanie leczenia dazatynibem, ze skuteczną i bezpieczną kontynuacją terapii przewlekłej białaczki szpikowej nilotynibem. Hematologia 2013; 4(1): 76-83.
51. Olschewski H., Nagaraj C., Tang B. et al.: Novel role of src family tyrosine kinase (srctk) in response of potassium channels in human pulmonary artery smooth muscle cells to hypoxia. Am. J. Respir. Crit. Care Med. 2011; 183: A5484.
52. Oda Y., Renaux B., Bjorge J. et al.: Csrc is a major cytosolic tyrosine kinase in vascular tissue. Can. J. Physiol. Pharmacol. 1999; 77: 606-617.
53. Girerd B., Montani D., Eyries M. et al.: Absence of influence of gender and BMPR2 mutation type on clinical phenotypes of pulmonary arterial hypertension. Respir. Res. 2010; 11: 73.
54. Austin E.D., Cogan J.D., West J.D. et al.: Alterations in oestrogen metabolism: implications for higher penetrance of familial pulmonary arterial hypertension in females. Eur. Respir. J. 2009; 34: 1093-1099.
55. Schermuly R.T., Dony E., Ghofrani H.A. et al.: Reversal of experimental pulmonary hypertension by PDGF inhibition. J. Clin. Invest. 2005; 115: 2811-2821.
56. Perros F., Montani D., Dorfmüller P. et al.: Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2008; 178: 81-88.
57. Izikki M., Guignabert C., Fadel E. et al.: Endothelial-derived fgf2 contributes to the progression of pulmonary hypertension in humans and rodents. J. Clin. Invest. 2009; 119: 512-523.
58. Tu L., Dewachter L., Gore B. et al.: Autocrine FGF2 signaling contributes to altered endothelial phenotype in pulmonary hypertension. Am. J. Respir. Cell Mol. Biol. 2011; 45: 311-22.
59. Montani D., Perros F., Gambaryan N. et al.: C-kit-positive cells accumulate in remodeled vessels of idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2011; 184: 116-123.
60. Dahal B.K., Cornitescu T., Tretyn A. et al.: Role of epidermal growth factor inhibition in experimental pulmonary hypertension. Am. J. Respir. Crit. Care Med. 2010; 181: 158-167.
61. Merklinger S.L., Jones P.L., Martinez E.C. et al.: Epidermal growth factor receptor blockade mediates smooth muscle cell apoptosis and improves survival in rats with pulmonary hypertension. Circulation 2005; 112: 423-431.
62. Adir Y., Humbert M.: Pulmonary hypertension in patients with chronic myeloproliferative disorders. Eur. Respir. J. 2010; 35(6): 1396-406.
63. Guilpain P., Montani D., Damaj G. et al.: Pulmonary hypertension associated with myeloproliferative disorders: a retrospective study of ten cases. Respiration 2008; 76(3): 295-302.
64. García-Manero G., Schuster S.J., Patrick H. et al.: Pulmonary hypertension in patients with myelofibrosis secondary to myeloproliferative diseases. Am. J. Hematol. 1999; 60: 130-135.
65. Dingli D., Utz J.P., Krowka M.J. et al.: Unexplained pulmonary hypertension in chronic myeloproliferative disorders. Chest 2001; 120: 801-808.
66. Altintas A., Karahan Z., Pasa S. et al.: Pulmonary hypertension in patients with essentials thrombocythemia and reactive hrombocytosis. Leuk. Lymphoma 2007; 48: 1981-1987.
67. Garypidou V., Vakalopoulou S., Dimitriadis D. et al.: Incidence of pulmonary hypertension in patients with chronic myeloproliferative disorders. Haematologica 2004; 89: 245-246.
68. Gupta R., Perumandla S., Patsiornik Y. et al.: Incidence of pulmonary hypertension in patients with chronic myeloproliferative disorders. J. Natl. Med. Assoc. 2006; 98: 1779-1782.
69. Souza R., Sitbon O., Parent F. et al.: Long term imatinib treatment in pulmonary arterial hypertension. Thorax 2006; 61(8): 736.
70. Ghofrani H.A., Morrell N.W., Hoeper M.M. et al.: Imatinib in pulmonary arterial hypertension patients with inadequate response to established therapy. Am. J. Respir. Crit. Care Med. 2010; 182(9): 1171-7.
71. Galie N., Hoeper M.M., Humbert M. et al.: Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 2009; 34: 1219-1263.
72. Ghio S., Gavazzi A., Campana C. et al.: Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J. Am. Coll. Cardiol. 2001; 37: 183-188.
73. Vahanian A., Baumgartner H., Bax J. et al.; Task Force on the Management of Valvular Hearth Disease of the European Society of Cardiology; ESC Committee for Practice Guidelines: Guidelines on the management of valvular heart disease: The Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology. Eur. Heart J. 2007; 28: 230-268.
74. Simonneau G., Robbins I., Beghetti M. et al.: Updated clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 2009; 54: S43-S54.
75. Gabbay E., Yeow W., Playford D.: Pulmonary arterial hypertension (PAH) is an uncommon cause of pulmonary hypertension (PH) in an unselected population: the Armadale echocardiography study. Am. J. Resp. Crit. Care Med. 2007; 175: A713.
76. Abraham W.T., Raynolds M.V., Gottschall B. et al.: Importance of angiotensin-converting enzyme in pulmonary hypertension. Cardiology 1995; 10(Suppl. 1): 9-15.
77. Peacock A.J., Murphy N.F., McMurray J.J.V. et al.: An epidemiological study of pulmonary arterial hypertension. Eur. Respir. J. 2007; 30: 104-109.
78. Humbert M., Sitbon O., Chaouat A. et al.: Pulmonary arterial hypertension in France: results from a national registry. Am. J. Respir. Crit. Care Med. 2006; 173: 1023-1030.
79. Kim T.D., le Coutre P., Schwarz M. et al.: Clinical cardiac safety profile of nilotinib. Haematologica 2012; 97(6): 883-9.
80. Ferri N., Carragher N.O., Raines E.W.: Role of discoidin domain receptors 1 and 2 in human smooth muscle cell-mediated collagen remodeling: potential implications in atherosclerosis and lymphangioleiomyomatosis. Am. J. Pathol. 2004; 164: 1575-1585.
81. Aichberger K.J., Herndlhofer S., Schernthaner G.H. et al.: Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML. Am. J. Hematol. 2011; 86(7): 533-9.
82. Valent P.: Severe adverse events associated with the use of second-line BCR/ABL tyrosine kinase inhibitors: preferential occurrence in patients with comorbidities. Haematologica 2011; 96(10): 1395-7.
83. Tefferi A., Letendre L.: Nilotinib treatment-associated peripheral artery disease and sudden death: yet another reason to stick to imatinib as front-line therapy of chronic myelogenous leukemia. Am. J. Hematol. 2011; 86(7): 610-611.
84. Quintas-Cardama A., Kantarjian H., Cortes J.: Nilotinib-associated vascular events. Clin. Lymphoma Myeloma Leuk. 2012; 12(5): 337-40.
85. Kantarjian H.M., Kim D.W., Issaragrisil S. et al.: ENESTnd 4-year update: continued superiority of nilotinib vs imatinib in patients with newly diagnosed Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia in chronic phase (CML-CP). Poster Presentation at American Society of Hematology – 54th Annual Meeting; December 8-11, 2012; Altanta, GA. Poster 1676.
86. le Coutre P., Rea D., Abruzzese E. et al.: Severe peripheral arterial disease during nilotinib therapy. J. Natl. Cancer Inst. 2011; 103: 1347-8.
87. Levato L., Cantaffa R., Kropp M. et al.: Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in chronic myeloid leukemia. W: Proceedings from the American Society of Hematology – 54th Annual Meeting; December 8-11, 2012; Atlanta, GA. Abstract 1679.
88. Labussiere-Wallet H., Guillermin Y., Etienne M. et al.: Analysis of clinical arterial and metabolic parameters in chronic phase CML patients on nilotinib in a single center cohort. W: Proceedings from the American Society of Hematology – 54th Annual Meeting; December 8-11, 2012; Atlanta, GA. Abstract 3756.
89. Kim T.D., Rea D., Schwarz M. et al.: Peripheral artery occlusive disease in chronic phase chronic myeloid leukemia patients treated with nilotinib or imatinib. Leukemia 2013; 27(6): 1316-21.
90. Giles F.J., Mauro M.J., Hong F. et al.: Rates of peripheral arterial occlusive disease in patients with chronic myeloid leukemia in the chronic phase treated with imatinib, nilotinib, or non-tyrosine kinase therapy: a retrospective cohort analysis. Leukemia 2013; 27(6): 1310-5.
91. Saglio G., Kim D.W., Issaragrisil S. et al.: Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N. Engl. J. Med. 2010; 362: 2251-2259.
92. Cortes J.E., Baccarani M., Guilhot F. et al.: Phase III, randomized, open-label study of daily imatinib mesylate 400 mg versus 800 mg in patients with newly diagnosed, previously untreated chronic myeloid leukemia in chronic phase using molecular end points: tyrosine kinase inhibitor optimization and selectivity study. J. Clin. Oncol. 2010; 28: 424-430.
93. O’Brien S.G., Guilhot F., Larson R.A. et al.: Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med. 2003; 348: 994-1004.
94. Nakamura K., Akagi S., Ogawa A. et al.: Pro-apoptotic effects of imatinib on PDGF-stimulated pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. Int. J. Cardiol. 2011; 159: 100-106.
95. Li L., Blumenthal D.K., Masaki T. et al.: Differential effects of imatinib on PDGF-induced proliferation and PDGF receptor signaling in human arterial and venous smooth muscle cells. J. Cell. Biochem. 2006; 99: 1553-1563.
96. Agostino N.M., Chinchilli V.M., Lynch C.J. et al.: Effect of the tyrosine kinase inhibitors (sunitinib, sorafenib, dasatinib, and imatinib) on blood glucose levels in diabetic and nondiabetic patients in general clinical practice. J. Oncol. Pharm. Pract. 2011; 17: 197-202.
97. Lassila M., Allen T.J., Cao Z. et al.: Imatinib attenuates diabetes-associated atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2004; 24: 935-942.
98. Larson R.A., Hochhaus A., Hughes T.P. et al.: Nilotinib vs imatinib in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase: ENESTnd 3-year follow-up. Leukemia 2012; 26: 2197-2203.
99. Murabito J.M., Evans J.C., Larson M.G. et al.: The ankle-brachial index in the elderly and risk of stroke, coronary disease, and death: The Framingham Study. Arch. Intern. Med. 2003; 163: 939-942.
100.Leng G.C., Fowkes F.G., Lee A.J. et al.: Use of ankle-brachial pressure index to predict cardiovascular events and death: A cohort study. BMJ 1996; 313: 1440-1444.
101. McDermott M.M., Liu K., Greenland P. et al.: Functional decline in peripheral arterial disease: Associations with the ankle-brachial index and leg symptoms. JAMA 2004; 292: 453-461.
102.Curb J.D., Masaki K., Rodriguez B.L. et al.: Peripheral artery disease and cardiovascular risk factors in the elderly: the Honolulu Heart Program. Arterioscler. Thromb. Vasc. Biol. 1996; 16: 1495-1500.
103. Zheng Z.J., Sharrett A.R., Chambless L.E. et al.: Associations of ankle-brachial index with clinical coronary heart disease, stroke and preclinical carotid and popliteal atherosclerosis: the Atherosclerosis Risk in Communities (ARIC) Study. Atherosclerosis 1997; 131: 115-125.
104.Newman A.B., Shemanski L., Manolio T.A. et al.: Ankle-arm index as a predictor of cardiovascular disease and mortality in the Cardiovascular Health Study: the Cardiovascular Health Study Group. Arterioscler. Thromb. Vasc. Biol. 1999; 19: 538-545.
105. Murabito J.M., Evans J.C., Nieto K. et al.: Prevalence and clinical correlates of peripheral arterial disease in the Framingham Offspring Study. Am. Heart J. 2002; 143: 961-965.
106.Newman A.B., Siscovick D.S., Manolio T.A. et al.: Ankle-arm index as a marker of atherosclerosis in the Cardiovascular Health Study. Cardiovascular Heart Study (CHS) Collaborative Research Group. Circulation 1993; 88: 837-845.
107. Meijer W.T., Grobbee D.E., Hunink M.G. et al.: Determinants of peripheral arterial disease in the elderly: The Rotterdam Study. Arch. Intern. Med. 2000; 160: 2934-2938.
108. Selvin E., Erlinger T.P.: Prevalence and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey 1999-2000. Circulation 2004; 110: 738-43.
109. Ridker P.M., Stampfer M.J., Rifai N.: Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA 2001; 285: 2481-2485.
110. McDermott M.M., Green D., Greenland P. et al.: Relation of levels of hemostatic factors and inflammatory markers to the ankle-brachial index. Am. J. Cardiol. 2003; 92: 194-199.
111. Ostchega Y., Paulose-Ram R., Dillon C.F. et al.: Prevalence of peripheral arterial disease and risk factors in persons aged 60 and older: data from the National Health and Nutrition Examination Survey 1999-2004. J. Am. Geriatr. Soc. 2007; 55(4): 583-9.

Inne teksty tego samego autora