Nefrotoksyczność leków stosowanych w chemioterapii nowotworów Artykuł przeglądowy

##plugins.themes.bootstrap3.article.main##

Joanna Matuszkiewicz-Rowińska
Mariusz Mieczkowski

Abstrakt

Rozwój onkologii klinicznej oraz coraz częstsza zapadalność na nowotwory powodują szybkie zwiększanie się grupy chorych leczonych chemioterapeutykami. Stosowanie tych leków oprócz korzyści niesie ze sobą również ryzyko wystąpienia ciężkich powikłań klinicznych. Nefrotoksyczność nie jest tylko jednym z nich, gdyż (co bardzo ważne) stopień uszkodzenia nerek warunkuje toksyczność w odniesieniu do innych narządów. Poniższy przegląd stanowi podsumowanie działań nefrotoksycznych najczęściej stosowanych chemioterapeutyków, ich obraz kliniczny oraz metody zapobiegania im i leczenia. Omawianymi lekami są: cisplatyna, karboplatyna, mitomycyna C, cyklofosfamid, ifosfamid, pochodne nitrozomocznika, metotreksat, gemcytabina, pemetreksed, cetuksymab, interferony, leki antyangiogenne, a także, stosowane jako leczenie uzupełniające, bisfosfoniany.

Pobrania

Dane pobrania nie są jeszcze dostepne

##plugins.generic.paperbuzz.metrics##

##plugins.generic.paperbuzz.loading##

##plugins.themes.bootstrap3.article.details##

Jak cytować
1.
Matuszkiewicz-Rowińska J, Mieczkowski M. Nefrotoksyczność leków stosowanych w chemioterapii nowotworów. OncoReview [Internet]. 30 marzec 2012 [cytowane 23 listopad 2024];2(1(5):29-8. Dostępne na: https://journalsmededu.pl/index.php/OncoReview/article/view/291
Dział
Artykuły

Bibliografia

1. Yokoo S., Yonezawa A., Masuda S. et al.: Differential contribution of organic cation transporters, OCT2 and MATE1, in platinum agent-induced nephrotoxicity. Biochem. Pharmacol. 2007; 74: 477-487.
2. Ciarimboli G., Ludwig T., Lang D. et al.: Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am. J. Pathol. 2005; 167: 1477-1484.
3. Luke D.R., Vadiei K., Lopez-Berestein G.: Role of vascular congestion in cisplatin-induced acute renal failure in the rat. Nephrol. Dial. Transplant. 1992; 7: 1-7.
4. Zhang B., Ramesh G., Norbury C.C. et al.: Cisplatin-induced nephrotoxicity is mediated by tumor necrosis factor-alpha produced by renal parenchymal cells. Kidney Int. 2007; 72: 37-44.
5. Liu M., Chien C.C., Burne-Taney M. et al.: A pathophysiologic role for T lymphocytes in murine acute cisplatin nephrotoxicity. J. Am. Soc. Nephrol. 2006; 17: 765-774.
6. Lajer H., Kristensen M., Hansen H.H. et al.: Magnesium depletion enhances cisplatin-induced nephrotoxicity. Cancer Chemother. Pharmacol. 2005; 56: 535-542.
7. Kitada N., Takara K., Itoh C. et al.: Comparative analysis of cell injury after exposure to antitumor platinum derivatives in kidney tubular epithelial cells. Chemotherapy 2008; 54: 217-223.
8. Ettinger L.J., Gaynon P.S., Krailo M.D. et al.: A phase II study of carboplatin in children with recurrent or progressive solid tumors. A report from the Childrens Cancer Group. Cancer 1994; 73: 1297-1301.
9. Groff J.A., Kozak M., Boehmer J.P. et al.: Endotheliopathy: a continuum of hemolytic uremic syndrome due to mitomycin therapy. Am. J. Kidney Dis. 1997; 29: 280-284.
10. Jackson A.M., Rose B.D., Graff L.G. et al.: Thrombotic microangiopathy and renal failure associated with antineoplastic chemotherapy. Ann. Intern. Med. 1984; 101: 41-44.
11. Valavaara R., Nordman E.: Renal complications of mitomycin C therapy with special reference to the total dose. Cancer 1985; 55: 47-50.
12. Wu D.C., Liu J.M., Chen Y.M. et al.: Mitomycin-C Induced Hemolytic Uremic Syndrome: A Case Report and Literature Review. Jpn J. Clin. Oncol. 1997; 27: 115-118.
13. Sheldon R., Slaughter D.: A syndrome of microangiopathic hemolytic anemia, renal impairment, and pulmonary edema in chemotherapy-treated patients with adenocarcinoma. Cancer 1986; 58: 1428-1436.
14. Montes A., Powles T.J., O’Brien M.E. et al.: A toxic interaction between mitomycin C and tamoxifen causing the haemolytic uraemic syndrome. Eur. J. Cancer 1993; 29: 1854-1857.
15. Bressler R.B., Huston D.P.: Water intoxication following moderate-dose intravenous cyclophosphamide. Arch. Intern. Med. 1985; 145: 548-549.
16. Koch K.L.: Nausea and vasopressin. Lancet 1991; 337: 1133-1134.
17. Lapraik C., Watts R., Bacon P. et al.: BSR and BHPR guidelines for the management of adults with ANCA associated vasculitis. Rheumatology 2007; 46: 1-11.
18. Oberlin O., Fawaz O., Rey A. et al.: Long-term evaluation of ifosfamide-related nephrotoxicity in children. J. Clin. Oncol. 2009; 27: 5350-5355.
19. Skinner R., Cotterill S.J., Stevens M.C.: Risk factors for nephrotoxicity after ifosfamide treatment in children: a UKCCSG Late Effects Group study. United Kingdom Children’s Cancer Study Group. Br. J. Cancer 2000; 82: 1636-1641.
20. Stöhr W., Paulides M., Bielack S. et al.: Ifosfamide-induced nephrotoxicity in 593 sarcoma patients: a report from the Late Effects Surveillance System. Pediatr. Blood Cancer 2007; 48: 447-452.
21. Perazella M.: Chemotherapeutic Agents and the Kidney. ASN Kidney Week On-Demand, Philadelphia Nov. 2011.
22. Lee B.S., Lee J.H., Kang H.G. et al.: Ifosfamide nephrotoxicity in pediatric cancer patients. Pediatr. Nephrol. 2001; 16: 796-799.
23. Kintzel P.E., Dorr R.T.: Anticancer drug renal toxicity and elimination: dosing guidelines for altered renal function. Cancer Treat. Rev. 1995; 21: 33-38.
24. Ciarimboli G., Holle S.K., Vollenbröcker B. et al.: New clues for nephrotoxicity induced by ifosfamide: preferential renal uptake via the human organic cation transporter 2. Mol. Pharm. 2011; 7: 270-279.
25. Narins R.G., Carley M., Bloom E.J. et al.: The nephrotoxicity of chemotherapeutic agents. Semin. Nephrol. 1990; 10: 556-64.
26. Hricik D.E., Goldsmith G.H.: Uric acid nephrolithiasis and acute renal failure secondary to streptozotocin nephrotoxicity. Am. J. Med. 1988; 84: 153-156.
27. Delaney V., de Pertuz Y., Nixon D. et al.: Indomethacin in streptozocin-induced nephrogenic diabetes insipidus. Am. J. Kidney Dis. 1987; 9: 79-83.
28. Sadoff L.: Nephrotoxicity of streptozotocin. Cancer Chemother. Rep. 1970; 54: 457-459.
29. Tobin M.V., Warenius H.M., Morris A.I.: Forced diuresis to reduce nephrotoxicity of streptozotocin in the treatment of advanced metastatic insulinoma. Br. Med. J. 1987; 294: 1128-1129.
30. Widemann B.C., Adamson P.C.: Understanding and managing methotrexate nephrotoxicity. Oncologist 2006; 11: 694-703.
31. Liamis G., Milionis H., Elisaf M.: A review of drug-induced hyponatremia. Am. J. Kidney Dis. 2008; 52: 144-153.
32. Schwartz S., Borner K., Müller K. et al.: Glucarpidase (carboxypeptidase g2) intervention in adult and elderly cancer patients with renal dysfunction and delayed methotrexate elimination after high-dose methotrexate therapy. Oncologist 2007; 12: 1299-1308.
33. Ackland S.P., Schilsky R.L.: High-dose methotrexate: a critical reappraisal. J. Clin. Oncol. 1987; 5: 2017-2031.
34. Jambou P., Levraut J., Favier C. et al.: Removal of methotrexate by continuous venovenous hemodiafiltration. Contrib. Nephrol. 1995; 116: 48-52.
35. Buchen S., Ngampolo D., Melton R.G. et al.: Carboxypeptidase G2 rescue in patients with methotrexate intoxication and renal failure. Br. J. Cancer 2005; 92: 480-487.
36. Lewin S.N., Mutch D.G., Whitcomb B.P. et al.: Three cases of hemolytic uremic syndrome in ovarian cancer patients treated with combination gemcitabine and pegylated liposomal doxorubicin. Gynecol. Oncol. 2005; 97: 228-233.
37. Desramé J., Duvic C., Bredin C. et al.: Hemolytic uremic syndrome as a complication of gemcitabine treatment: report of six cases and review of the literature. Rev. Med. Interne 2005; 26: 179-188.
38. Müller S., Schütt P., Bojko P. et al.: Hemolytic uremic syndrome following prolonged gemcitabine therapy: report of four cases from a single institution. Ann. Hematol. 2005; 84: 110-114.
39. Glezerman I., Kris M.G., Miller V. et al.: Gemcitabine nephrotoxicity and hemolytic uremic syndrome: report of 29 cases from a single institution. Clin. Nephrol. 2009; 71: 130-139.
40. Gourley B.L., Mesa H., Gupta P.: Rapid and complete resolution of chemotherapy-induced thrombotic thrombocytopenic purpura/hemolytic uremic syndrome (TTP/HUS) with rituximab. Cancer Chemother. Pharmacol. 2010; 65: 1001-1004.
41. Glezerman I.G., Pietanza M.C., Miller V. et al.: Kidney tubular toxicity of maintenance pemetrexed therapy. Am. J. Kidney Dis. 2011; 58: 817-820.
42. Vootukuru V., Liew Y.P., Nally J.V. Jr.: Pemetrexed-induced acute renal failure, nephrogenic diabetes insipidus, and renal tubular acidosis in a patient with non-small cell lung cancer. Med. Oncol. 2006; 23: 419-422.
43. Stavroulopoulos A., Nakopoulou L., Xydakis A.M. et al.: Interstitial nephritis and nephrogenic diabetes insipidus in a patient treated with pemetrexed. Ren. Fail. 2010; 32: 1000-1004.
44. Schrag D., Chung K.Y., Flombaum C., Saltz L.: Cetuximab therapy and symptomatic hypomagnesemia. J. Natl. Cancer Inst. 2005; 97: 1221-1224.
45. Cao Y., Liu L., Liao C. et al.: Meta-analysis of incidence and risk of hypokalemia with cetuximab-based therapy for advanced cancer. Cancer Chemother. Pharmacol. 2010; 66: 37-42.
46. Niewold T.B., Swedler W.I.: Systemic lupus erythematosus arising during interferon-alpha therapy for cryoglobulinemic vasculitis associated with hepatitis C. Clin. Rheumatol. 2005; 24: 178-181.
47. Gota C., Calabrese L.: Induction of clinical autoimmune disease by therapeutic interferon-alpha. Autoimmunity 2003; 36: 511-518.
48. Zuber J., Martinez F., Droz D. et al.: Alpha-interferon-associated thrombotic microangiopathy: a clinicopathologic study of 8 patients and review of the literature. Medicine (Baltimore) 2002; 81: 321-331.
49. Arrue I., Saiz A., Ortiz-Romero P.L. et al.: Lupus-like reaction to interferon at the injection site: report of five cases. J. Cutan. Pathol. 2007; Suppl. 1: 18-21.
50. Markowitz G.S., Nasr S.H., Stokes M.B. et al.: Treatment with IFN-α, -β, or -γ is associated with collapsing focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2010; 5: 607-615.
51. Izzedine H., Massard C., Spano J.P. et al.: VEGF signalling inhibition-induced proteinuria: Mechanisms, significance and management. Eur. J. Cancer 2010; 46: 439-448.
52. Eremina V., Jefferson J.A., Kowalewska J. et al.: VEGF inhibition and renal thrombotic microangiopathy: brief report. N. Engl. J. Med. 2008; 358: 1129-1136.
53. Jhaveri K.D., Flombaum C.D., Kroog G. et al.: Tyrosine kinase inhibitors: a single-center experience and review of the literature. Nephron. Clin. Pract. 2011; 117: c312-c319.
54. Costero O., Picazo M.L., Zamora P. et al.: Inhibition of tyrosine kinases by sunitinib associated with focal segmental glomerulosclerosis lesion in addition to thrombotic microangiopathy. Nephrol. Dial. Transplant. 2010; 25: 1001-1003.
55. Murukesh N., Dive C., Jayson G.C.: Biomarkers of angiogenesis and their role in the development of VEGF inhibitors. Br. J. Cancer 2010; 102: 8-18.
56. Zhu X., Wu S., Dahut W.L., Parikh C.R.: Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and metaanalysis. Am. J. Kidney Dis. 2007; 49: 186-193.
57. Miller K.D., Chap L.I., Holmes F.A. et al.: Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J. Clin. Oncol. 2005; 23: 792-799.
58. Perazella M.A., Markowitz G.S.: Bisphosphonate nephrotoxicity. Kidney Int. 2008; 74: 1385-1393.
59. Markowitz G.S., Appel G.B., Fine P.L. et al.: Collapsing focal segmental glomerulosclerosis following treatment with high-dose pamidronate. J. Am. Soc. Nephrol. 2001; 12: 1164-1172.
60. Chang J.T., Green L., Beitz J.: Renal failure with the use of zoledronic acid. N. Engl. J. Med. 2003; 349: 1676-1678.

Inne teksty tego samego autora