Glejak - aktualna wiedza oraz perspektywy Artykuł przeglądowy

##plugins.themes.bootstrap3.article.main##

Dominik Bilicki
Mikołaj Zbrożek
Marta Fudalej
Andrzej Deptała
Anna Badowska-Kozakiewicz

Abstrakt

Glejak wielopostaciowy klasyfikowany jest do grupy najbardziej złośliwych glejaków o IV stopniu złośliwości ze szczególnie niekorzystnymi prognozami związanymi z jego leczeniem. Pojawienie się u pacjenta szybko postępujących objawów zarówno psychiatrycznych, jak i neurologicznych powinno być zawsze dokładnie zbadane. Artykuł ma na celu zebranie oraz podsumowanie aktualnej wiedzy na temat glejaka oraz zaprezentowanie możliwych perspektyw rozwoju metod diagnostyczno-leczniczych. Rozwój glejaka ma zazwyczaj związek z mutacjami w genach EGFR, PTEN, IDH1 lub p53. Do użytecznych narzędzi diagnostycznych należą m.in. badanie MRI, analiza metylacji promotora genu MGMT oraz immunohistochemiczne oznacznie GFAP. W leczeniu glejaków wielopostaciowych najczęściej stosowanym  schematem jest protokół Stuppa bazujący na połączeniu radioterapii z chemioterapią temozolomidem. Niemniej jednak, dalsze możliwości leczenia są limitowane. Zintegrowane wysiłki naukowców są ukierunkowane na poszukiwanie nowych strategii leczenia przy użyciu m.in. teraapii CAR-T, nanocząteczek, przeciwciał monoklonalnych, miRNA, siRNA oraz inhibitorów proteasomów

Pobrania

Dane pobrania nie są jeszcze dostepne

##plugins.generic.paperbuzz.metrics##

##plugins.generic.paperbuzz.loading##

##plugins.themes.bootstrap3.article.details##

Jak cytować
1.
Bilicki D, Zbrożek M, Fudalej M, Deptała A, Badowska-Kozakiewicz A. Glejak - aktualna wiedza oraz perspektywy. OncoReview [Internet]. 30 czerwiec 2022 [cytowane 22 lipiec 2024];12(2(46):35-4. Dostępne na: https://journalsmededu.pl/index.php/OncoReview/article/view/1795
Dział
PERSONALIZED ONCOLOGY

Bibliografia

1. Piccirillo SGM, Colman S, Potter NE et al. Genetic and functional diversity of propagating cells in glioblastoma. Stem Cell Reports. 2015; 4 (1): 7-15.
2. Gallego O. Nonsurgical treatment of recurrent glioblastoma. Curr Oncol. 2015; 22(4): e273-281.
3. Adamson C, Kanu OO, Mehta AI et al. Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs. 2009; 18(8): 1061-83.
4. Taylor OG, Brzozowski JS, Skelding KA. Glioblastoma Multiforme: An Overview of Emerging Therapeutic Targets. Front Oncol. 2019; 9: 963.
5. Ostrom QT, Patil N, Cioffi G et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013-2017. Neuro Oncol. 2020; 22(12 suppl 2): iv1-iv96.
6. Batash R, Asna N, Schaffer P et al. Glioblastoma Multiforme, Diagnosis and Treatment; Recent Literature Review. Curr Med Chem. 2017; 24 (27): 3002-9.
7. Ohgaki H, Kleihues P. The definition of primary and secondary glioblastoma. Clin Cancer Res. 2013; 19(4): 764-72.
8. Ludwig K, Kornblum HI. Molecular markers in glioma. J Neurooncol. 2017; 134(3): 505-12.
9. Kim CK, Nguyen TL, Joo KM et al. Negative regulation of p53 by the long isoform of ErbB3 binding protein Ebp1 in brain tumors. Cancer Res. 2010; 70(23): 9730-41.
10. Soomro SH, Ting LR, Qing YY et al. Molecular biology of glioblastoma: Classification and mutational locations. J Pak Med Assoc. 2017; 67(9): 1410-4.
11. Verhaak RG, Hoadley KA, Purdom E et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010; 17(1): 98-110.
12. Alifieris C, Trafalis DT. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol Ther. 2015; 152: 63-82.
13. Huang Z, Cheng L, Guryanova OA et al. Cancer stem cells in glioblastoma-molecular signaling and therapeutic targeting. Protein Cell. 2010; 1(7): 638-55.
14. Alexander BM, Cloughesy TF. Adult Glioblastoma. J Clin Oncol. 2017; 35 (21): 2402-9.
15. Khandwala K, Mubarak F, Minhas K. The many faces of glioblastoma: Pictorial review of atypical imaging features. Neuroradiol J. 2021; 34(1): 33-41.
16. Cunha M, Maldaun MVC. Metastasis from glioblastoma multiforme: a meta-analysis. Rev Assoc Med Bras. 2019; 65(3): 424-33.
17. Lee EJ, Ahn KJ, Lee EK et al. Potential role of advanced MRI techniques for the peritumoural region in differentiating glioblastoma multiforme and solitary metastatic lesions. Clin Radiol. 2013; 68 (12): e689-697.
18. Nabors LB, Portnow J, Ammirati M et al. Central Nervous System Cancers, Version 1.2015. J Natl Compr Canc Netw. 2015; 13(10): 1191-202.
19. Staller A. Presumed Glioblastoma Multiforme: A Case for Biopsy Prior to Treatment. Clin J Oncol Nurs. 2016; 20(1): 95-7.
20. Figueroa JM, Carter BS. Detection of glioblastoma in biofluids. J Neurosurg. 2018; 129 (2): 334-40.
21. Quddusi A, Shamim MS. Serum biomarkers for glioblastoma multiforme. J Pak Med Assoc. 2019; 69(6): 913-4.
22. Ostrom QT, Bauchet L, Davis FG et al. The epidemiology of glioma in adults: a “state of the science” review. Neuro-Oncology. 2014; 16(7): 896-913.
23. Ellor SV, Pagano-Young TA, Avgeropoulos NG. Glioblastoma: background, standard treatment paradigms, and supportive care considerations. J Law Med Ethics. 2014; 42(2): 171-82.
24. Stummer W, Pichlmeier U, Meinel T et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006; 7(5): 392-401.
25. Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N Engl J Med. 2005; 352(10): 987-96.
26. Stupp R, Taillibert S, Kanner A et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial. JAMA. 2017; 318(23): 2306-16.
27. Ameratunga M, Pavlakis N, Wheeler H et al. Anti-angiogenic therapy for high-grade glioma. Cochrane Database Syst Rev. 2018; 11(11): CD008218- CD008218.
28. Stevens GH. Antiepileptic therapy in patients with central nervous system malignancies. Curr Neurol Neurosci Rep. 2006; 6(4): 311-8.
29. Shao M, Liu W, Wang Y. Differentially expressed LncRNAs as potential prognostic biomarkers for glioblastoma. Cancer Genetics. 2018; 226-7: 23-9.
30. Chen HH, Zong J, Wang SJ. LncRNA GAPLINC promotes the growth and metastasis of glioblastoma by sponging miR-331-3p. Eur Rev Med Pharmacol Sci. 2019; 23(1): 262-70.
31. Li J, Ji X, Wang H. Targeting Long Noncoding RNA HMMR-AS1 Suppresses and Radiosensitizes Glioblastoma. Neoplasia. 2018; 20(5): 456-66.
32. Li Q, Dong C, Cui J et al. Over-expressed lncRNA HOTAIRM1 promotes tumor growth and invasion through up-regulating HOXA1 and sequestering G9a/EZH2/Dnmts away from the HOXA1 gene in glioblastoma multiforme. J Exp Clin Cancer Res. 2018; 37(1): 265.
33. Tang G, Luo L, Zhang J et al. lncRNA LINC01057 promotes mesenchymal differentiation by activating NF-κB signaling in glioblastoma. Cancer Letters. 2021; 498: 152-64.
34. Baspinar Y, Elmaci I, Ozpinar A et al. Long non-coding RNA MALAT1 as a key target in pathogenesis of glioblastoma. Janus faces or Achilles’ heal? Gene. 2020; 739: 144518.
35. Liao K, Lin Y, Gao W et al. Blocking lncRNA MALAT1/miR-199a/ZHX1 Axis Inhibits Glioblastoma Proliferation and Progression. Molecular Therapy – Nucleic Acids. 2019; 18: 388-99.
36. Li Z, Zhang J, Zheng H et al. Modulating lncRNA SNHG15/CDK6/miR-627 circuit by palbociclib, overcomes temozolomide resistance and reduces M2-polarization of glioma associated microglia in glioblastoma multiforme. J Exp Clin Cancer Res. 2019; 38(1): 380.
37. Ren J, Yang Y, Xue J et al. Long noncoding RNA SNHG7 promotes the progression and growth of glioblastoma via inhibition of miR-5095. Biochem Biophys Res Commun. 2018; 496(2): 712-8.
38. Mazor G, Levin L, Picard D et al. The lncRNA TP73-AS1 is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells. Cell Death Dis. 2019; 10(3): 246.
39. Andrews LP, Yano H, Vignali DAA. Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: breakthroughs or backups. Nat Immunol. 2019; 20(11): 1425-34.
40. Sabahi M, Jabbari P, Alizadeh Haghighi M et al. Proposing a tandem AND-gate CAR T cell targeting glioblastoma multiforme. Med Hypotheses. 2020; 137: 109559.
41. Aguilar B, Sarkissian A, Brito A et al. 275. Optimization of IL13Rα2-Specific CAR T Cells for Clinical Development Using Orthotopic Human Glioblastoma Models in NSG Mice. Mol Ther. 2016; 24: S109.
42. Keskin DB, Anandappa AJ, Sun J et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019; 565(7738): 234-9.
43. Burger MC, Zhang C, Harter PN et al. CAR-Engineered NK Cells for the Treatment of Glioblastoma: Turning Innate Effectors Into Precision Tools for Cancer Immunotherapy. Front Immunol. 2019; 10: 2683.
44. Peereboom D, Nabors LB, Kumthekar P et al. 373O – Results of phase II trial of SL-701, a novel immunotherapy targeting IL-13Ra2, EphA2, and survivin, in adults with second-line recurrent glioblastoma (GBM). Ann Oncol. 2018; 29: viii122-viii123.
45. Gardell JL, Matsumoto LR, Chinn H et al. Human macrophages engineered to secrete a bispecific T cell engager support antigen-dependent T cell responses to glioblastoma. J Immunother Cancer. 2020; 8(2): e001202.
46. Cui J, Wang H, Medina R et al. Inhibition of PP2A with LB-100 Enhances Efficacy of CAR-T Cell Therapy Against Glioblastoma. Cancers (Basel). 2020; 12(1):139.
47. Do AS-MS, Amano T, Edwards LA et al. CD133 mRNA-Loaded Dendritic Cell Vaccination Abrogates Glioma Stem Cell Propagation in Humanized Glioblastoma Mouse Model. Mol Ther – Oncolytics. 2020; 18: 295-303.
48. Jin L, Ge H, Long Y et al. CD70, a novel target of CAR T-cell therapy for gliomas. Neuro Oncol. 2018; 20(1): 55-65.
49. Pellegatta S, Savoldo B, Su C et al. 507. Chondroitin Sulfate Proteoglycan 4 (CSPG4)-Redirected T Cells Eliminate Glioblastoma-Derived Neurospheres. Mol Ther. 2016; 24: S202.
50. Jung IY, Kim YY , Yu HS et al. CRISPR/Cas9-Mediated Knockout of DGK Improves Antitumor Activities of Human T Cells. Cancer Res. 2018; 78(16): 4692-703.
51. O'Rourke DM, Nasrallah MP, Desai A et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017; 9(399): eaaa0984
52. Nakazawa T, Natsume A, Nishimura F et al. Effect of CRISPR/Cas9-Mediated PD-1-Disrupted Primary Human Third-Generation CAR-T Cells Targeting EGFRvIII on In Vitro Human Glioblastoma Cell Growth. Cells. 2020; 9(4): 998.
53. Choi BD, Yu X, Castano AP et al. CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J Immunother Cancer. 2019; 7(1): 304.
54. Liuzzi AR, Agliardi G, Becher B et al. 106P – A Single Dose of Local IL-12 Promotes Anti-Tumor Effect of Anti-EGFRvIII-CAR-T Cells in a Syngeneic Murine Model of Glioblastoma. Ann Oncol. 2019; 30: xi40.
55. Song Y, Liu Q, Zuo T et al. Combined antitumor effects of anti-EGFR variant III CAR-T cell therapy and PD-1 checkpoint blockade on glioblastoma in mouse model. Cell Immunol. 2020; 352: 104112.
56. Ahmed N, Brawley V, Hegde M et al. HER2-Specific Chimeric Antigen Receptor-Modified Virus-Specific T Cells for Progressive Glioblastoma: A Phase 1 Dose-Escalation Trial. JAMA Oncol. 2017; 3(8): 1094-101.
57. Sanber K, Nawas Z, Salsman V et al. Modulation of inhibitory receptor signaling pathways improves CAR T cell activity against glioblastoma. Cytotherapy. 2020; 22(5 suppl): S19-S20.
58. Brown CE, Alizadeh D, Starr R et al. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. N Engl J Med. 2016; 375(26): 2561-9.
59. Kim GB, Aragon-Sanabria V, Randolph L et al. High-affinity mutant Interleukin-13 targeted CAR T cells enhance delivery of clickable biodegradable fluorescent nanoparticles to glioblastoma. Bioact Mater. 2020; 5(3): 624-35.
60. Møller HG, Rasmussen AP, Andersen HH et al. A Systematic Review of MicroRNA in Glioblastoma Multiforme: Micro-modulators in the Mesenchymal Mode of Migration and Invasion. Mol Neurobiol. 2013; 47(1): 131-44.
61. Marino A, Almici E, Migliorin S et al. Piezoelectric barium titanate nanostimulators for the treatment of glioblastoma multiforme. J Colloid Interface Sci. 2019; 538: 449-61.
62. Li T-F, Li K, Zhang Q et al. Dendritic cell-mediated delivery of doxorubicin-polyglycerol-nanodiamond composites elicits enhanced anti-cancer immune response in glioblastoma. Biomaterials. 2018; 181: 35-52.
63. Banerjee I, De K, Mukherjee D et al. Paclitaxel-loaded solid lipid nanoparticles modified with Tyr-3-octreotide for enhanced anti-angiogenic and antiglioma therapy. Acta Biomater. 2016; 38: 69-81.
64. Wu S-Q, Yang C-X, Yan X-P. A Dual-Functional Persistently Luminescent Nanocomposite Enables Engineering of Mesenchymal Stem Cells for Homing and Gene Therapy of Glioblastoma. Adv Funct Mater. 2017; 27(11): 1604992.
65. Roth P, Mason WP, Richardson PG et al. Proteasome inhibition for the treatment of glioblastoma. Expert Opin Investig Drugs. 2020; 29(10): 1133-41.
66. Rahman MA, Gras Navarro A, Brekke J et al. Bortezomib administered prior to temozolomide depletes MGMT, chemosensitizes glioblastoma with unmethylated MGMT promoter and prolongs animal survival. Br J Cancer. 2019; 121(7): 545-55.
67. Cloughesy TF, Mochizuki AY, Orpilla JR et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019; 25(3): 477-86.
68. Guetta-Terrier C, Akosmam B, Chen JS et al. 185 Poster – Antibody blockade resets Chi3L1-induced glioma stem cell phenotypic transitions and reduces glioblastoma tumor burden. Eur J Cancer. 2020; 138: S52.
69. Westphal M, Heese O, Steinbach JP et al. A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma. Eur J Cancer. 2015; 51(4): 522-32.
70. Harris-Bookman S, Mathios D, Martin AM et al. Expression of LAG-3 and efficacy of combination treatment with anti-LAG-3 and anti-PD-1 monoclonal antibodies in glioblastoma. Int J Cancer. 2018; 143(12): 3201-8.
71. Arnold AE, Malek-Adamian E, Le PU et al. Antibody-Antisense Oligonucleotide Conjugate Downregulates a Key Gene in Glioblastoma Stem Cells. Mol Ther Nucleic Acids. 2018; 11: 518-27.
72. Lu X, Wang M, Qiang J et al. Circular RNA circ-PITX1 promotes the progression of glioblastoma by acting as a competing endogenous RNA to regulate miR 379–5p/MAP3K2 axis. Eur J Pharmacol. 2019; 863: 172643.
73. Memari E, Maghsoudi A, Yazdian F et al. Synthesis of PHB-co-PEI nanoparticles as gene carriers for miR-128-encoding plasmid delivery to U87 glioblastoma cells. Colloids Surf A: Physicochem Eng Asp. 2020; 599: 124898.
74. Singh A, Srivastava N, Yadav A et al. Targeting AGTR1/NF-κB/CXCR4 axis by miR-155 attenuates oncogenesis in glioblastoma. Neoplasia. 2020; 22(10): 497-510.
75. Pan C-M, Chan K-H, Chen C-H et al. MicroRNA-7 targets T-Box 2 to inhibit epithelial-mesenchymal transition and invasiveness in glioblastoma multiforme. Cancer Lett. 2020; 493: 133-42.
76. Rezaei T, Hejazi M, Mansoori B et al. microRNA-181a mediates the chemo-sensitivity of glioblastoma to carmustine and regulates cell proliferation, migration, and apoptosis. Eur J Pharmacol. 2020; 888: 173483.
77. Zhang Y-X, Li X-F, Yuan G-Q et al. β-Arrestin 1 has an essential role in neurokinin-1 receptor-mediated glioblastoma cell proliferation and G2/M phase transition. J Biol Chem. 2017; 292(21): 8933-47.
78. Wang S, Fan Y, Xu Y et al. GDNFOS1 knockdown decreases the invasion and viability of glioblastoma cells. Exp Ther Med. 2019; 18(2): 1315-22.
79. Lu YJ, Lan YH, Chuang CC et al. Injectable Thermo-Sensitive Chitosan Hydrogel Containing CPT-11-Loaded EGFR-Targeted Graphene Oxide and SLP2
shRNA for Localized Drug/Gene Delivery in Glioblastoma Therapy. Int J Mol Sci. 2020; 21(19): 7111.
80. Lee JA, Ayat N, Sun Z et al. Improving Radiation Response in Glioblastoma Using ECO Nanoparticle Delivery of siRNA Targeting DNA Damage Repair. Int J Radiat Oncol Biol Phys. 2017; 99(2 Suppl): E604.
81. Azambuja JH, Schuh RS, Michels LR et al. Blockade of CD73 delays glioblastoma growth by modulating the immune environment. Cancer Immunol Immunother. 2020; 69(9): 1801-12.
82. Danhier F, Messaoudi K, Lemaire L et al. Combined anti-Galectin-1 and anti-EGFR siRNA-loaded chitosan-lipid nanocapsules decrease temozolomide resistance in glioblastoma: In vivo evaluation. Int J Pharm. 2015; 481(1): 154-61.
83. Ding X, Deng G, Liu J et al. GOLM1 silencing inhibits the proliferation and motility of human glioblastoma cells via the Wnt/β-catenin signaling pathway. Brain Res. 2019; 1717: 117-26.
84. Önay Uçar E, Şengelen A. Resveratrol and siRNA in combination reduces Hsp27 expression and induces caspase-3 activity in human glioblastoma cells. Cell Stress Chaperones. 2019; 24(4): 763-75.
85. Wei J, Marisetty A, Schrand B et al. Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target. J Clin Invest. 2019; 129(1): 137-49.
86. Zheng M, Liu Y, Wang Y et al. ROS-Responsive Polymeric siRNA Nanomedicine Stabilized by Triple Interactions for the Robust Glioblastoma Combinational RNAi Therapy. Adv Mater. 2019; 31(37): e1903277.
87. Cen B, Wei Y, Huang W et al. An Efficient Bivalent Cyclic RGD-PIK3CB siRNA Conjugate for Specific Targeted Therapy against Glioblastoma In Vitro and In Vivo. Mol Ther Nucleic Acids. 2018; 13: 220-32.
88. Esposito CL, Nuzzo S, Catuogno S et al. STAT3 Gene Silencing by Aptamer-siRNA Chimera as Selective Therapeutic for Glioblastoma. Mol Ther Nucleic Acids. 2018; 10: 398-411.
89. Wu S, Luo C, Hameed NUF et al. UCP2 silencing in glioblastoma reduces cell proliferation and invasiveness by inhibiting p38 MAPK pathway. Exp Cell Res. 2020; 394(1): 112110.
90. Yang J, Zhang Q, Liu Y et al. Nanoparticle-based co-delivery of siRNA and paclitaxel for dual-targeting of glioblastoma. Nanomedicine (Lond). 2020; 15(14): 1391-409.
91. Rosenthal M, Clement PM, Campone M et al. Buparlisib plus carboplatin or lomustine in patients with recurrent glioblastoma: a phase Ib/II, open-label, multicentre, randomised study. ESMO Open. 2020; 5(4): e000672.
92. Das A, Cheng RR, Hilbert ML et al. Synergistic Effects of Crizotinib and Temozolomide in Experimental FIG ROS1 Fusion-Positive Glioblastoma. Cancer Growth Metastasis. 2015; 8: 51-60.
93. Zhu Y-G, Lv Y-X, Guo C-Y et al. Harmine inhibits the proliferation and migration of glioblastoma cells via the FAK/AKT pathway. Life Sci. 2021; 270: 119112.
94. Weller J, Tzaridis T, Mack F et al. Health-related quality of life and neurocognitive functioning with lomustine temozolomide versus temozolomide in patients with newly diagnosed, MGMT-methylated glioblastoma (CeTeG/NOA-09): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2019; 20(10): 1444-53.
95. Zielke S, Meyer N, Mari M et al. Loperamide, pimozide, and STF-62247 trigger autophagy-dependent cell death in glioblastoma cells. Cell Death Dis. 2018; 9(10): 994.
96. da Fonseca CO, Simão M, Lins IR et al. Efficacy of monoterpene perillyl alcohol upon survival rate of patients with recurrent glioblastoma. J Cancer Res Clin Oncol. 2011; 137(2): 287-93.
97. Sachdeva R, Wu M, Smiljanic S et al. ID1 Is Critical for Tumorigenesis and Regulates Chemoresistance in Glioblastoma. Cancer Res. 2019; 79(16): 4057-71.
98. Biau J, Thivat E, Chautard E et al. Phase 1 trial of ralimetinib (LY 2228820) with radiotherapy plus concomitant temozolomide in the treatment of newly diagnosed glioblastoma. Radiother Oncol. 2021; 154: 227-34.
99. Detti B, Scoccianti S, Lucidi S et al. Regorafenib in glioblastoma recurrence: A case report. Cancer Treat Res Commun. 2021; 26: 100263.