Sclareol and cancer prevention: A mini-review Review article
Main Article Content
Abstract
Sclareol is a labdane-type phytochemical compound that, due to its pharmacological attributes and historical use in herbal medicine, has attracted noteworthy attention. Numbers of research, mainly through testing on human and animal models, have demonstrated a wide range of effects, by which using sclareol may be considered as an important method in cancer prevention. By using the key words sclareol, cancer, neoplasia, we extracted the articles published up to September 2020 through search in PubMed, SID, ISI Web of Science, Scholar, and Scopus. This study aimed to summarize the research and studies on sclareol and its effects on cancer prevention and treatment.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright: © Medical Education sp. z o.o. This is an Open Access article distributed under the terms of the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). License (https://creativecommons.org/licenses/by-nc/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Address reprint requests to: Medical Education, Marcin Kuźma (marcin.kuzma@mededu.pl)
References
2. Bray F, Ferlay J, Soerjomataram I et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries . CA Cancer J Clin. 2018; 68(6): 394-424. http://doi.org/10.3322/caac.21492. Published correction appears in CA Cancer J Clin. 2020; 70(4): 313.
3. Ferlay J, Colombet M, Soerjomataram I et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019; 144(8): 1941-53. http://doi.org/10.1002/ijc.31937.
4. Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell. 2009; 136(5): 823-37. http://doi.org/10.1016/j.cell.2009.02.024. Erratum in: Cell. 2009; 138(4): 807
5. Rauf A, Imran M, Butt MS et al. Resveratrol as an anti-cancer agent: A review. Crit Rev Food Sci Nutr. 2018; 58(9): 1428-47.
6. Evans BE, Rittle KE, Bock MG et al. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem. 1988; 31(12): 2235-46.
7. Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011; 10(7): 507-19. http://doi.org/10.1038/nrd3480.
8. Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012; 75(3): 311-35.
9. Ulubelen A, Sönmez U, Topcu G et al. An abietane diterpene and two phenolics from Salvia forskahlei. Phytochemistry. 1996; 42(1): 145-7.
10. Dimas K, Kokkinopoulos D, Demetzos C et al. The effect of sclareol on growth and cell cycle progression of human leukemic cell lines. Leuk Res. 1999; 23(3): 217-34.
11. Dimas K, Demetzos C, Vaos V et al. Labdane type diterpenes down-regulate the expression of c-Myc protein, but not of Bcl-2, in human leukemia T-cells undergoing apoptosis. Leuk Res. 2001; 25(6): 449-54.
12. Dimas K, Papadaki M, Tsimplouli C et al. Labd-14-ene-8, 13-diol (sclareol) induces cell cycle arrest and apoptosis in human breast cancer cells and enhances the activity of anti-cancer drugs. Biomed Pharmacother. 2006; 60(3): 127-33.
13. Dimas K, Hatziantoniou S, Tseleni S et al. Sclareol induces apoptosis in human HCT116 colon cancer cells in vitro and suppression of HCT116 tumor growth in immunodeficient mice. Apoptosis. 2007; 12(4): 685-94.
14. Noori S, Hassan ZM, Mohammadi M et al. Sclareol modulates the Treg intra-tumoral infiltrated cell and inhibits tumor growth in vivo. Cell Immunol. 2010; 263(2): 148-53.
15. Cosco D, Mare R, Paolino D et al. Sclareol-loaded hyaluronan-coated PLGA nanoparticles: Physico-chemical properties and in vitro anti-cancer features. Int J Biol Macromol. 2019; 132: 550-7.
16. Mahaira LG, Tsimplouli C, Sakellaridis N et al. The labdane diterpene sclareol (labd-14-ene-8, 13-diol) induces apoptosis in human tumor cell lines and suppression of tumor growth in vivo via a p53-independent mechanism of action. Eur J Pharmacol. 2011; 666(1 3): 173-82.
17. Hatziantoniou S, Dimas K, Georgopoulos A et al. Cytotoxic and anti-tumor activity of liposome-incorporated sclareol against cancer cell lines and human colon cancer xenografts. Pharmacol Res. 2006; 53(1): 80-7.
18. Paradissis A, Hatziantoniou S, Georgopoulos A et al. Liposomes modify the subcellular distribution of sclareol uptake by HCT-116 cancer cell lines. Biomed Pharmacother. 2007; 61(2-3): 120-4.
19. Nallu A, Kathiresan S, Kathiresan S. Tumour preventive potential of sclareol on 7, 12 dimethylbenz [a] anthracene (DMBA) induced hamster buccal pouch carcinogenesis. Int J Res Pharm Sci. 2020; 11(1): 1182-91.
20. Chinnaiyan A, Nallu A, Kathiresan S. Sclareol induces apoptosis and inhibits notch signaling in hamster oral carcinogenesis. AACR; 2020.
21. Li W, Ping Z, Xuemei G et al. Naturally Occurring Sclareol Diterpene Augments the Chemosensitivity of Human Hela Cervical Cancer Cells by Inducing Mitochondrial Mediated Programmed Cell Death, S-Phase Cell Cycle Arrest and Targeting Mitogen-Activated Protein Kinase (MAPK)/Extracellular-Signal-Regulated Kinase (ERK) Signaling Pathway. Med Sci Monit. 2020; 26: e920248-1.
22. Zhang T, Wang T, Cai P. Sclareol inhibits cell proliferation and sensitizes cells to the anti-proliferative effect of bortezomib via upregulating the tumor suppressor caveolin-1 in cervical cancer cells. Mol Med Rep. 2017; 15(6): 3566-74.
23. Rubinfeld H, Seger R. The ERK cascade as a prototype of MAPK signaling pathways. MAP Kinase Signaling Protocols: Springer; 2004: 1-28.
24. Chen HL, Gong JY, Lin SC et al. Effects of Sclareol Against Small Cell Lung Carcinoma and the Related Mechanism: In Vitro and In Vivo Studies. Anticancer Res. 2020; 40(9): 4947-60.
25. Hamishehkar H, Bahadori MB, Vandghanooni S et al. Preparation, characterization and anti-proliferative effects of sclareol-loaded solid lipid nanoparticles on A549 human lung epithelial cancer cells. J Drug Deliv Sci Technol. 2018; 45: 272-80.
26. Paradissis A, Hatziantoniou S, Georgopoulos A et al. Uptake Studies of Free and Liposomal Sclareol by Mcf-7 and H-460 Human Cancer Cell Lines. Nanomaterials and Nanosystems for Biomedical Applications: Springer; 2007: 125-33.
27. Chen SY. Sclareol Enhance Susceptibility to Cisplatin in Non-Small Cell Lung Cancer. Faseb J. 2016; 30 (suppl 1): 1193.11-1193.11. http://doi.org/10.1096/fasebj.30.1_supplement.1193.11.
28. Astardzhieva Z, Stoichkov IJEMiM. The effect of sclareol lactone and sclareol glycol on artificially induced lung metastases of Lewis lung carcinoma (a preliminary report). 1990; 29(3): 58-61.
29. Dimas K, Kokkinopoulos D, Demetzos C et al. The effect of sclareol on growth and cell cycle progression of human leukemic cell lines. Leuk Res. 1999; 23(3): 217-34.
30. Aboutalebi E, Dolatkhah H, Sakhinia E et al. Investigating the effect of Sclareol on IRE-1 and PERK genes The pathway of reticulandaplasmic system stress in gastric cancer cells MKN-45. International Journal of Research in Applied and Basic Medical Sciences. 2020; 6(1): 32-44.
31. Dimas K, Papadaki M, Tsimplouli C et al. Labd-14-ene-8,13-diol (sclareol) induces cell cycle arrest and apoptosis in human breast cancer cells and enhances the activity of anti-cancer drugs. Biomed Pharmacother. 2006; 60(3): 127-33.
32. Afshari H, Nourbakhsh M, Salehi N et al. STAT3-mediated apoptotic-enhancing function of sclareol against breast cancer cells and cell sensitization to cyclophosphamide. Iran J Pharm Res. 2020; 19(1): 398-412.
33. Noori S, Mohammad Hassan Z, Salehian O. Sclareol Reduces CD4+ CD25+ FoxP3+ T-reg cells in a breast cancer model in vivo. Iran J Immunol. 2013; 10(1): 10-21.
34. Borges GSM, de Oliveira Silva J, Fernandes RS et al. Sclareol is a potent enhancer of doxorubicin: Evaluation of the free combination and co-loaded nanostructured lipid carriers against breast cancer. Life Sci. 2019; 232: 116678.