Height and hourly variations in the concentration of airborne pollen grains and fungal spores in Sosnowiec (Poland) Artykuł oryginalny

##plugins.themes.bootstrap3.article.main##

Katarzyna Dąbrowska-Zapart
Tadeusz Niedźwiedź

Abstrakt

The aim of the work was to compare the qualitative and quantitative composition of aeroplankton in Sosnowiec (Poland) at three heights. The research was conducted on July 3rd, 4th and 5th, 2018 with the help of three Burkard spore traps: one stationary and two portable ones. The analyses were carried out at an altitude of 83 m, 15 m and at the ground level. Aerobiological data was recorded every hour and the collected pollen grains and fungal spores were determined later on. The relationships between individual meteorological conditions and different features of the alder pollen season were determined using Spearman’s rank correlation coefficients. The research has shown that the greatest fluctuations in the daily pollen count occurred at the lowest measuring point, i.e. at the ground level. The largest part of the determined palynomorphs were fungal spores, the most numerous of which was Cladosporium, followed by Alternaria, Epicoccum and Botrytis. Statistical analysis showed that the highest concentrations of fungal spores and plant pollen grains were influenced by wind speed, maximum gust of wind and solar radiation.

Pobrania

Dane pobrania nie są jeszcze dostepne

##plugins.themes.bootstrap3.article.details##

Jak cytować
Dąbrowska-Zapart , K., & Niedźwiedź , T. (2020). Height and hourly variations in the concentration of airborne pollen grains and fungal spores in Sosnowiec (Poland). Alergoprofil, 16(1), 21-23. https://doi.org/10.24292/01.AP.161120220
Dział
MEDICAL AEROBIOLOGY

Bibliografia

1. Gregory PH. Distribution of airborne pollen and spores and their long distance transport. Pageoph. 1978; 116: 309-315.
2. Rantio-Lehtimäki A, Koivikko A, Kupias R et al. Significance of sampling height of airborne particles for aerobiological information. Allergy. 1991; 46(1): 68-76. https://doi.org/10.1111/j.1398-9995.1991.tb00545.x.
3. Galán C, Tormo R, Cuevas J et al. Theoretical daily variations patterns of airborne pollen in the South-West of Spain. Grana. 1991; 30: 201-209. https://doi.org/10.1080/00173139109427800.
4. Bergamini BM, Grillenzoni S, Andreoni AD et al. Alternaria spores at different heights from the ground. Allergy. 2004; 59: 746-752. https://doi.org/10.1111/j.1398-9995.2004.00423.x.
5. Mandrioli P, Negrini MG, Cesari G et al. Evidence for long range transport of biological and anthropogenic aerosol particles in the atmosphere. Grana. 1984; 23: 43-53. https://doi.org/10.1080/00173138409428876.
6. Davies RR. Pollen and fungal spores in the city atmosphere. Acta Allergol. 1965; 20: 508.
7. Raynor GS, Ogden EC, Hayes JV. Variation in ragweed pollen concentration to a height of 108 m. J Allergy Clin Immun. 1973; 51(4): 199-207. https://doi.org/10.1016/0091-6749(73)90139-5.
8. Jędrzejko K. Tereny zielone Sosnowca, charakterystyka florystyczno- ekologiczna. In: Wanatowicz M (ed). Rocznik Sosnowiecki 1993. Urząd Miejski w Sosnowcu, Sosnowiec 1993, 2: 116-139.
9. Niedźwiedź T, Małarzewski Ł. Klimat Sosnowca. In: Barciak A, Jankowski AT (ed). Sosnowiec. Obraz miasta i jego dzieje. Muzeum w Sosnowcu 2016, 1: 74-86.
10. Käpylä M. Diurnal variation of tree pollen in the air in Finland. Grana. 1984; 23: 167-176. https://doi.org/10.1080/00173138409427712.
11. Kasprzyk I, Uruska A, Szczepanek K et al. Regional differentiation in the dynamics of the pollen seasons of Alnus, Corylus and Fraxinus in Poland (Preliminary results). Aerobiologia. 2004; 20: 141-151. https://doi.org/10.1023/B:AERO.0000032951.25974.c9.
12. Nitiu DS. Intradiurnal fluctuation of pollen in La Plata, Argentina. Part I, herbaceous pollen types. Aerobiologia. 2004; 20(1): 69-74. https://doi.org/10.1023/B:AERO.0000022986.59858.28.
13. Miquel MP. Les organismes vivants de l’atmosphere. Gauthier-Villars. Paris 1883. https://doi.org/10.5962/bhl.title.1692.
14. Ingold CT. Fungal spores: their liberation and dispersal. Clarendon Press, Oxford 1971, 4: 302.
15. Käpylä M. Diurnal variation of non-arboreal pollen in the air in Finland. Grana. 1981; 20: 55-59. https://doi.org/10.1080/00173138109436737.
16. Spieksma FTM. Fluctuations in grass-pollen counts in relation to nightly inversion and air pollution potential of the atmosphere. Int J Biometeorol. 1983; 27: 107-116. https://doi.org/10.1007/BF02185740.
17. Spieksma FTM, den Tonkelaar JF. Four hourly fluctuations in grass pollen concentrations in relation to wet versus dry weather, and to short versus overland advection. Int J Biometeorol. 1986; 30: 351-358. https://doi.org/10.1007/BF02189373.
18. Corden JM, Millington WM. The long term trends and seasonal variation of theaeroallergen Alternaria in Derby, UK. Aerobiologia. 2001; 17: 127-136.
19. Mäkinen Y, Ollikainen P. Diurnal and seasonal variations in the airspora composition in Turku, S. Finland. In: Nilsson S (ed). Scandinavian aerobiology. Bull Ecol Res Comm. 1973; 18: 143-152.
20. Mäkinen Y, Rantio-Lehtimäki A. Diurnal variation of airborne fungal spores in Turku, Finland, in 1974. Rep Aerobiol Lab Univ Turku. 1979; 1: 1-27.
21. Pérez CF, Gardiol JM, Paez MM. Comparison of intradiurnal variation of airborne pollen in Mar del Plata (Argentina). Part I. Non-arboretal pollen. Aerobiologia. 2001; 17: 151-163. https://doi.org/10.1023/A:1010889203400.
22. Munoz Rodriguez AF, Palacios I, Molina R. Influence of meteorological parameters in hourly patterns of grass (Poaceae) pollen concentrations. Ann Agric Environ Med. 2010; 17: 87-100.
23. Pérez-Badia R, Rapp A, Vaquero C et al. Aerobiological study in east-central Iberian Peninsula: pollen diversity and dynamics for major taxa. Ann Agric Environ Med. 2001; 18: 99-111.
24. Peel RG, Ørby PV, Skjøth CA et al. Seasonal variation in diurnal atmospheric grass pollen concentration profiles. Biogeosciences. 2014; 11: 821-832. https://doi.org/10.5194/bg-11-821-2014.
25. Khan M, Perveen A, Qaiser M. Seasonal and diurnal variation of atmospheric fungal concentrations in Hyderabad, Tandojam-Sindh and the effects of climatic conditions. Pak J Bot. 2016; 48(4): 1657-1663.
26. Grewling Ł, Bogawski P, Smith M. Pollen nightmare: elevatedairborne pollen levels at night. Aerobiologia. 2016; 32(4): 725-728. https://doi.org/10.1007/s10453-016-9441-7.
27. Rantio-Lehtimäki A, Helander ML, Pessi AM. Circadian periodicityof airborne pollen and spores; significance of samplingheight. Aerobiologia. 1991; 7(2): 129-135. https://doi.org/10.1007/BF02270681.
28. Mar Trigo M, Recio M, Javier Toro F et al. Intradiurnal fluctuations in airborne pollen in Málaga (S. Spain): A quantitative method. Grana. 1997; 36(1): 39-43. https://doi.org/10.1080/00173139709362588.
29. Norris-Hill J. The diurnal variation of Poaceae pollen concentrations in a rural area. Grana. 1999; 38(5): 301-305. https://doi.org/10.1080/001731300750044528.
30. Alwadie HM. Pollen Concentration in the Atmosphere of Abha City, Saudi Arabia and its Relationship with Meteorological Parameters. J Appl Sci. 2008; 8(5): 842-847. https://doi.org/10.3923/jas.2008.842.847.
31. Veriankaitė L, Šaulienė I, Bukantis A. Evaluation of meteorological parameters influence upon pollen spread in the atmosphere. Journal of Environ Eng Landsc 2011; 19(1): 5-11. https://doi.org/10.3846/16486897.2011.557252.
32. Puc M. Influence of meteorological parameters and air pollution on hourly fluctuation of birch (Betula L.) and ash (Fraxinus L.) airborne pollen. Ann Agric Environ Med. 2012, 19(4): 660-665.
33. Ščevková J, Kováč J. First fungal spore calendar for the atmosphere of Bratislava, Slovakia. Aerobiologia. 2019, 35: 343-356. https://doi.org/10.1007/s10453-019-09564-4.
34. Hasnain SM. Influence of meteorological factors on the air spora. Grana. 1993; 32: 184-188. https://doi.org/10.1080/00173139309428955.
35. Oliveira M, Ribeiro H, Delgado JL et al. The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level. Int. Journal of Biometeorol. 2009; 53: 61-73. https://doi.org/10.1007/s00484-008-0191-2.
36. Ianovici N. Relation between Poaceae pollen concentrations and meteorological factors during 2000–2010 in Timisoara, Romania. Acta Agrobotanica. 2015; 68(4): 373-381. https://doi.org/10.5586/aa.2015.033.
37. Fang Y, Ma C, Bunting J et al. Airborne pollen concentration in Nanjing, Eastern China, and its relationship with meteorological factors. J Geophys Res Atmos. 2018; 10: 842-856. https://doi.org/10.1029/2018JD029026.
38. Comtois P, Fernández-González D, Valencia-Barrera RM et. al. Pollen content study of the lower atmosphere in León (Spain) by use of a tethered balloon. Aerobiologia. 2000; 16: 187-191. https://doi.org/10.1023/A:1007685513925.
39. Khattab A, Levetin E. Effect of sampling height on the concentration of airborne fungal spores. Ann Allergy Asthma Immunol. 2008; 101: 529-534. https://doi.org/10.1016/S1081-1206(10)60293-1.
40. Damialis A, Kaimakamis E, Konoglou M et al. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly? Sci Rep. 2017; 7(44535): 1. https://doi.org/10.1038/srep44535.
41. Galán C, Alcázar-Teno P, Domínguez-Vilches E et al. Airborne pollen grain concentrations at two different heights. Aerobiologia. 1995; 11(2): 105-109. https://doi.org/10.1007/BF02738275.
42. Chakraborty P, Gupta-Bhattacharya S, Chowdhury I et al. Differences in concentrations of allergenic pollens and spores at different heights on an agricultural farm in west Bengal, India. Ann Agric Environ Med. 2001; 8(2): 123-130.
43. Atluri J, Verma KV, Reddi CS. Distribution of fungal spores within and above a crop of rice. Proc Indian Acad Sci. 1998; 98: 25-30. https://doi.org/10.1007/BF03053364.
44. Rizzi-Longo L, Pizzulin-Sauli M, Stravisi F et al. Airborne pollen calendar for Trieste (Italy), 1990-2004. Grana. 2007; 46, 98-109. https://doi.org/10.1080/00173130701302826.
45. Ščevková J, Dušička J, Chrenova J et al. Annual pollen spectrum variations in the air of Bratislava (Slovakia): Years 2002-2009. Aerobiologia. 2010; 26(4): 277-287. https://doi.org/10.1007/s10453-010-9163-1.
46. Alcázar P, Galán C, Cariñanos P et al. Effect of sampling height and climatic conditions in aerobiological studies. J Investig Allergol Clin Immunol. 1999; 9(3): 253-261.