7 clinical profiles of patients with infection of the respiratory tract in whom it is worth to use of azithromycin

Main Article Content

Tadeusz Płusa

Abstract

Respiratory infections still pose a threat to health and life. For this reason, new generations of antibiotics should be characterized by a broad spectrum of activity, penetration of the epithelium of the airways and lung parenchyma. The azithromycin is also characterized by the ability to penetrate into macrophages, and destruction of atypical bacteria. The above features with the ability to affect the immune processes point azithromycin to a particular place in modern recommendations of therapy.

Downloads

Download data is not yet available.

Article Details

How to Cite
Płusa , T. (2016). 7 clinical profiles of patients with infection of the respiratory tract in whom it is worth to use of azithromycin. Alergoprofil, 12(4), 162-168. Retrieved from https://journalsmededu.pl/index.php/alergoprofil/article/view/874
Section
Article

References

1. Zuckerman J.M., Qamar F., Bono B.R.: Macrolides, ketolides, and glycylcyclines: azithromycin, clarithromycin, telithromycin, tigecycline. Infect. Dis. Clin. North Am. 2009, 23(4): 997-1026: ix-x.
2. Woodhead M., Welch C.A., Harrison D.A. et al.: Community-acquired pneumonia on the intensive care unit: secondary analysis of 17,869 cases in the ICNARC Case Mix Programme Data-base. Crit. Care 2006, 10(supl. 2): S1.
3. Said M.A., Johnson H.L., Nonyane B.A. et al.: Estimating the burden of pneumococcal pneumonia among adults: a systematic review and meta-analysis of diagnostic techniques. PLoS One 2013, 8(4): e60273.
4. Alvarez-Lerma F., Torres A.: Severe community-acquired pneumonia. Curr. Opin. Crit. Care 2004, 10(5): 369-374.
5. Wunderink R.G., Waterer G.W.: Clinical practice. Community-acquired pneumonia. N. Engl. J. Med. 2014, 370(6): 543-551.
6. Mandell L.A.: Community-acquired pneumonia: An overview. Postgrad Med. 2015, 127(6): 607-615.
7. Endeman H., Meijvis S.C., Rijkers G.T. et al.: Systemic cytokine response in patients with community-acquired pneumonia. Eur. Respir. J. 2011, 37(6): 1431-1438.
8. Martinez R., Menendez R., Reyes S. et al.: Factors associated with inflammatory cytokine patterns in community-acquired pneumonia. Eur. Respir. J. 2011, 37(2): 393-399.
9. Aliberti S., Brambilla A.M., Chalmers J.D. et al.: Phenotyping community-acquired pneumonia according to the presence of acute respiratory failure and severe sepsis. Respir. Res. 2014, 15: 27.
10. Marik P.E., Pastores S.M., Annane D. et al.: Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients: consensus statements from an international task force by the American College of Critical Care Medicine. Crit. Care Med. 2008, 36(6): 1937-1949.
11. Salluh J.I., Verdeal J.C., Mello G.W. et al.: Cortisol levels in patients with severe community-acquired pneumonia. Intensive Care Med. 2006, 32(4): 595-598.
12. Salluh J.I., Bozza F.A., Soares M. et al.: Adrenal response in severe community-acquired pneumonia: impact on outcomes and disease severity. Chest 2008, 134(5): 947-954.
13. Bi Y., Yang J., Wang Y. et al.: Efficacy and safety of adjunctive corticosteroids therapy for severe community acquired pneumonia in adults: an updated systematic review and meta-analysis. Plos One 2016, Nov 15: 1-15 [doi: 10.1371/journal.pone.0165942].
14. Hryniewicz W., Albrecht P., Radzikowski A.: Rekomendacje postępowania w pozaszpitalnych zakażeniach układu oddechowego. Narodowy Program Ochrony Antybiotyków, 2016.
15. Knyazhitskiy A., Masson R.G., Corkey R. et al.: Beneficial response to macrolide antibiotic in a patient with desquamative interstitial pneumonia refractory to corticosteroid therapy. Chest 2008, 134(1): 185-187.
16. Wong E.H., Porter J.D., Edwards M.R. et al.: The role of macrolides in asthma: current evidence and future directions. Lancet Respir. Med. 2014, 2(8): 657-670.
17. Cecrdlova E., Petrickova K., Kolesar L. et al.: Manumycin A downregulates release of proinflammatory cytokines from TNF alpha stimulated human monocytes. Immunol. Lett. 2016, 169: 8-14.
18. Rodgers W., Frazier A.D., Champney W.S.: Solithromycin inhibition of protein synthesis and ribosome biogenesis in Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae. Antimicrob. Agents Chemother. 2013, 57(4): 1632-1637.
19. Kobayashi Y., Wada H., Rossios C. et al.: A novel macrolide solithromycin exerts superior anti-inflammatory effect via NF-κB inhibition. J. Pharmacol. Exp. Ther. 2013, 345(1): 76-84.
20. Viasus D., Ramos O., Ramos L. et al.: Solithromycin for the treatment of community-acquired bacterial pneumonia. Expert Rev. Respir. Med. 2016 [doi: 10.1080/17476348.2017.1249852].
21. Van Bambeke F., Tulkens P.M.: The role of solithromycin in the management of bacterial community-acquired pneumonia. Expert Rev. Anti. Infect. Ther. 2016, 14(3): 311-324.
22. Cazzola M., D’Amato G., Matera M.G.: Intrapulmonary penetration of antimicrobials and implications in the treatment of lower respiratory tract infections. W: Cazzola M., Blasi F., Ewig S. (red.): Antibiotics and the lung. Eur. Respir. Mon. Sheffield 2004:13-44.
23. Zheng S., Matzneller P., Zeitlinger M. et al.: Development of a population pharmacokinetic model characterizing the tissue distribution of azithromycin in healthy subjects. Antimicrob. Agents Chemother. 2014, 58(11): 6675-6684.
24. Foulds G., Shepard R.M., Johnson R.B.: The pharmacokinetics of azithromycin in human serum and tissues. J. Antimicrob. Chemother. 1990, 25(supl. A): 73-82.
25. Tillotson G.S., Remington J.S.: Antimicrobial action and the human immune system. W: Gillespie S., Tillotson G. (red.): Novel perspectives in antibacterial action. Royal Society of Medicine Press Ltd. London (UK) 2002: 61-70.
26. Langelot M., Cellerin L., Germaud P.: Anti-inflammatory effects of macrolides: applications in lung disease. Rev. Pneumonol. Clin. 2006, 62(4): 215-222.
27. Sanz M.J., Abu Nabah Y.N., Cerdá-Nicolás M. et al.: Erythromycin exerts in vivo anti-inflammatory activity downregulating cell adhesion molecule expression. Br. J. Pharmacol. 2005, 144: 190-201.
28. Tsai W.C., Rodriguez M.L., Young K.S. et al.: Azithromycin blocks neutrophil recruitment in Pseudomonas endobronchial infection. Am. J. Respir. Crit. Care Med. 2004, 170: 1331-1339.
29. Tamaoki J.: The effects of macrolides on inflammatory cells. Chest 2004, 125: 41S-51S.
30. Mertens T.C., Hiemstra P.S., Taube C.: Azithromycin differentially affects the IL-13-induced expression profile in human bronchial epithelial cells. Pulm. Pharmacol. Ther. 2016, 39: 14-20.
31. Johnston S.L., Szigeti M., Cross M. et al.: Azithromycin for Acute Exacerbations of Asthma: The AZALEA Randomized Clinical Trial. JAMA Intern. Ned. 2016, 176(11): 1630-1637.
32. Brusselle G.G., Vanderstichele C., Jordens P. et al.: Azithromycin for prevention of exacerbations in severe asthma (AZISAST): A multicenter randomised double-blind placebo-controlled trial. Thorax 2013, 68: 322-329.
33. Chung K.F., Wenzel S.E., Brozek J.L. et al.: International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur. Respir. J. 2014, 43: 343-373.
34. Płusa T.: Współczesne leczenie chorych na przewlekłą obturacyjną chorobę płuc. Medpress, Warszawa 2012: 182-204.
35. Reinert R.R.: Clinical efficacy of ketolides in the treatment of respiratory tract infections. J. Antimicrob. Chemother. 2004, 53(6): 918-927.
36. Giamerellos-Bourboulis E.J.: Macrolides beyond the conventional antimicrobias: a class of potent immunomodulators. Int. J. Antimicrob. Agents 2010, 31(1): 12-20.
37. Hoffmann N., Lee B., Hentzer M.: Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(-/-) mice. Antimicrob. Agents Chemother. 2007, 51(10): 3677-3687.
38. Simpson J.L., Powell H., Baines K.J. et al.: The effect of azithromycin in adults with stable neutrophilic COPD: a double blind randomised, placebo controlled trial. PLoS One 2014, 9(8): e105609 [doi: 10.1371/journal.pone.0105609].
39. Ku T.S., Palanisamy S.K., Lee S.A.: Susceptibility of Candida albicans biofilms to azithromycin, tigecycline and vancomycin and the interaction between tigecycline and antifungals. Int. J. Antimicrob. Agents 2010, 36(5): 441-446.
40. Menzel M., Akbarshahi H., Bjermer L. et al.: Azithromycin induces anti-viral effects in cultured bronchial epithelial cells from COPD patients. Sci. Rep. 2016, 6: 28698 [doi: 10.1038/srep28698].
41. Ni W., Shao X., Cai X. et al.: Prophylactic use of macrolide antibiotics for the prevention of chronic obstructive pulmonary disease exacerbation: A meta-analysis. PLOS ONE 2015: 1-13 [doi: 10.1371/journal.pone.0121257].
42. Vermeersch K., Gabrovska M., Deslypere G. et al.: The Belgian trial with azithromycin for acute COPD exacerbations requiring hospitalization: an investigator-initiated study protocol for a multicenter, randomized, double-blind, placebo-controlled trial. Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11: 687-696.
43. Orriols R., Hernando R., Ferrer A. et al.: Eradication therapy against Pseudomonas aeruginosa in non-cystic fibrosis bronchiectasis. Respiration 2015, 90(4): 299-305.
44. Fjaellegaard K., Sin M.D., Browatzki A. et al.: Antibiotic therapy for stable non-CF bronchiectasis in adults – A systematic review. Chron. Respir. Dis. 2016 Aug 9. pii: 1479972316661923 [epub ahead of print].
45. Restrepo M.I., Keyt H., Reyes L.K.F.: Aerosolized antibiotics. Respir. Care 2015, 60(6): 762-773.
46. Reinert R.R.: Clinical efficacy of ketolides in the treatment of respiratory tract infections. J. Antimicrob. Chemother. 2004, 53(6): 918-927.
47. Płusa T.: Makrolidy w zakażeniach układu oddechowego. Medpress, Warszawa 2007.
48. Lesley C., Segreti J.: Choosing the right macrolide antibiotic. A guide to selection. Drugs 1997, 53: 349-357.
49. Amacher D.E., Schomaker S.J., Retsema J.A.: Comparison of the effects of the new azalide antibiotic, azithromycin, and erythromycin estolate on rat liver cytochrome P-450. Antimicrob. Agents Chemother. 1991, 35: 1186-1190.
50. Kudoh S., Azuma A., Yamamoto M. et al.: Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin. Am. J. Respir. Crit. Care Med. 1998, 157: 1829-1832.
51. Rubin B.K., Henke M.O.: Immunomodulatory activity and effectiveness of macrolides in chronic airway disease. Chest 2004, 125: 70-78.
52. Kadota J., Mukae H., Ishii H. et al.: Long-term efficacy and safety of clarithromycin treatment in patients with diffuse panbronchiolitis. Respir. Med. 2003, 97: 844-850.
53. Iino Y., Toriyama M., Kudo K. et al.: Erythromycin inhibition of lipopolysaccharide-stimulated tumor necrosis factor-alpha production by human monocytes in vitro. Ann. Otol. Rhinol. Laryngol. 1992, 101: 16-20.
54. Labro M.T.: Antibiotics as anti-inflammatory agents. Curr. Opin. Invest. Drugs 2002, 3: 61-68.
55. Labro M.T.: Cellular accumulation of macrolide antibiotics. Intracellular bioactivity. W: Schönfeld W., Kirst H. (red.): Macrolide Antibiotics. Birkhäuser Verlag AG, Bazylea 2002: 37-52.
56. Jain R., Hachem R.R., Morrell M.R. et al.: Azithromycin is associated with increased survival in lung transplant recipients with bronchiolitis obliterans syndrome. J. Heart Lung Transplant. 2010, 29(5): 531-537.
57. Vos R., Vanaudenaerde B.M., Ottevaere A. et al.: Long-term azithromycin therapy for bronchiolitis obliterans syndrome: divide and conquer? J. Heart Lung Transplant. 2010, 29(12): 1358-1368.
58. Jaffe A., Francis J., Rosenthal M. et al.: Long-term azithromycin may improve lung function in children with cystic fibrosis. Lancet 1998, 351: 420.
59. Wolter J., Seeney S., Bell S. et al.: Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomized trial. Thorax 2002, 57: 212-216.
60. Clement A., Tamalet A., Leroux E. et al.: Long term effects of azithromycin in patients with cystic fibrosis: A double blind, placebo controlled trial. Thorax 2006, 61(10): 895-902.
61. Kabra S.K., Pawaiya R., Lodha R. et al.: Long-term daily high and low doses of azithromycin in children with cystic fibrosis: a randomized controlled trial. J. Cyst. Fibros. 2010, 9(1): 17-23.
62. Saiman L., Anstead M., Mayer-Hamblett N. et al.; AZ0004 Azithromycin Study Group: Effect of azithromycin on pulmonary function in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 2010, 303(17): 1707-1715.