7 profili klinicznych chorych z zakażeniami układu oddechowego, u których należy stosować azytromycynę

##plugins.themes.bootstrap3.article.main##

Tadeusz Płusa

Abstrakt

Zakażenia układu oddechowego wciąż stanowią zagrożenie zdrowia i życia. Z tego powodu nowe generacje antybiotyków powinny się cechować szerokim spektrum działania i penetracją do nabłonka dróg oddechowych oraz miąższu płucnego. Azytromycyna charakteryzuje się ponadto zdolnością do wnikania do wnętrza makrofagów i niszczenia tam bakterii atypowych. Powyższe cechy wraz ze zdolnością do wpływania na procesy immunologiczne dają azytromycynie szczególne miejsce we współczesnych zaleceniach terapeutycznych.

Pobrania

Dane pobrania nie są jeszcze dostepne

##plugins.themes.bootstrap3.article.details##

Jak cytować
Płusa , T. (2016). 7 profili klinicznych chorych z zakażeniami układu oddechowego, u których należy stosować azytromycynę. Alergoprofil, 12(4), 162-168. Pobrano z https://journalsmededu.pl/index.php/alergoprofil/article/view/874
Dział
Artykuł

Bibliografia

1. Zuckerman J.M., Qamar F., Bono B.R.: Macrolides, ketolides, and glycylcyclines: azithromycin, clarithromycin, telithromycin, tigecycline. Infect. Dis. Clin. North Am. 2009, 23(4): 997-1026: ix-x.
2. Woodhead M., Welch C.A., Harrison D.A. et al.: Community-acquired pneumonia on the intensive care unit: secondary analysis of 17,869 cases in the ICNARC Case Mix Programme Data-base. Crit. Care 2006, 10(supl. 2): S1.
3. Said M.A., Johnson H.L., Nonyane B.A. et al.: Estimating the burden of pneumococcal pneumonia among adults: a systematic review and meta-analysis of diagnostic techniques. PLoS One 2013, 8(4): e60273.
4. Alvarez-Lerma F., Torres A.: Severe community-acquired pneumonia. Curr. Opin. Crit. Care 2004, 10(5): 369-374.
5. Wunderink R.G., Waterer G.W.: Clinical practice. Community-acquired pneumonia. N. Engl. J. Med. 2014, 370(6): 543-551.
6. Mandell L.A.: Community-acquired pneumonia: An overview. Postgrad Med. 2015, 127(6): 607-615.
7. Endeman H., Meijvis S.C., Rijkers G.T. et al.: Systemic cytokine response in patients with community-acquired pneumonia. Eur. Respir. J. 2011, 37(6): 1431-1438.
8. Martinez R., Menendez R., Reyes S. et al.: Factors associated with inflammatory cytokine patterns in community-acquired pneumonia. Eur. Respir. J. 2011, 37(2): 393-399.
9. Aliberti S., Brambilla A.M., Chalmers J.D. et al.: Phenotyping community-acquired pneumonia according to the presence of acute respiratory failure and severe sepsis. Respir. Res. 2014, 15: 27.
10. Marik P.E., Pastores S.M., Annane D. et al.: Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients: consensus statements from an international task force by the American College of Critical Care Medicine. Crit. Care Med. 2008, 36(6): 1937-1949.
11. Salluh J.I., Verdeal J.C., Mello G.W. et al.: Cortisol levels in patients with severe community-acquired pneumonia. Intensive Care Med. 2006, 32(4): 595-598.
12. Salluh J.I., Bozza F.A., Soares M. et al.: Adrenal response in severe community-acquired pneumonia: impact on outcomes and disease severity. Chest 2008, 134(5): 947-954.
13. Bi Y., Yang J., Wang Y. et al.: Efficacy and safety of adjunctive corticosteroids therapy for severe community acquired pneumonia in adults: an updated systematic review and meta-analysis. Plos One 2016, Nov 15: 1-15 [doi: 10.1371/journal.pone.0165942].
14. Hryniewicz W., Albrecht P., Radzikowski A.: Rekomendacje postępowania w pozaszpitalnych zakażeniach układu oddechowego. Narodowy Program Ochrony Antybiotyków, 2016.
15. Knyazhitskiy A., Masson R.G., Corkey R. et al.: Beneficial response to macrolide antibiotic in a patient with desquamative interstitial pneumonia refractory to corticosteroid therapy. Chest 2008, 134(1): 185-187.
16. Wong E.H., Porter J.D., Edwards M.R. et al.: The role of macrolides in asthma: current evidence and future directions. Lancet Respir. Med. 2014, 2(8): 657-670.
17. Cecrdlova E., Petrickova K., Kolesar L. et al.: Manumycin A downregulates release of proinflammatory cytokines from TNF alpha stimulated human monocytes. Immunol. Lett. 2016, 169: 8-14.
18. Rodgers W., Frazier A.D., Champney W.S.: Solithromycin inhibition of protein synthesis and ribosome biogenesis in Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae. Antimicrob. Agents Chemother. 2013, 57(4): 1632-1637.
19. Kobayashi Y., Wada H., Rossios C. et al.: A novel macrolide solithromycin exerts superior anti-inflammatory effect via NF-κB inhibition. J. Pharmacol. Exp. Ther. 2013, 345(1): 76-84.
20. Viasus D., Ramos O., Ramos L. et al.: Solithromycin for the treatment of community-acquired bacterial pneumonia. Expert Rev. Respir. Med. 2016 [doi: 10.1080/17476348.2017.1249852].
21. Van Bambeke F., Tulkens P.M.: The role of solithromycin in the management of bacterial community-acquired pneumonia. Expert Rev. Anti. Infect. Ther. 2016, 14(3): 311-324.
22. Cazzola M., D’Amato G., Matera M.G.: Intrapulmonary penetration of antimicrobials and implications in the treatment of lower respiratory tract infections. W: Cazzola M., Blasi F., Ewig S. (red.): Antibiotics and the lung. Eur. Respir. Mon. Sheffield 2004:13-44.
23. Zheng S., Matzneller P., Zeitlinger M. et al.: Development of a population pharmacokinetic model characterizing the tissue distribution of azithromycin in healthy subjects. Antimicrob. Agents Chemother. 2014, 58(11): 6675-6684.
24. Foulds G., Shepard R.M., Johnson R.B.: The pharmacokinetics of azithromycin in human serum and tissues. J. Antimicrob. Chemother. 1990, 25(supl. A): 73-82.
25. Tillotson G.S., Remington J.S.: Antimicrobial action and the human immune system. W: Gillespie S., Tillotson G. (red.): Novel perspectives in antibacterial action. Royal Society of Medicine Press Ltd. London (UK) 2002: 61-70.
26. Langelot M., Cellerin L., Germaud P.: Anti-inflammatory effects of macrolides: applications in lung disease. Rev. Pneumonol. Clin. 2006, 62(4): 215-222.
27. Sanz M.J., Abu Nabah Y.N., Cerdá-Nicolás M. et al.: Erythromycin exerts in vivo anti-inflammatory activity downregulating cell adhesion molecule expression. Br. J. Pharmacol. 2005, 144: 190-201.
28. Tsai W.C., Rodriguez M.L., Young K.S. et al.: Azithromycin blocks neutrophil recruitment in Pseudomonas endobronchial infection. Am. J. Respir. Crit. Care Med. 2004, 170: 1331-1339.
29. Tamaoki J.: The effects of macrolides on inflammatory cells. Chest 2004, 125: 41S-51S.
30. Mertens T.C., Hiemstra P.S., Taube C.: Azithromycin differentially affects the IL-13-induced expression profile in human bronchial epithelial cells. Pulm. Pharmacol. Ther. 2016, 39: 14-20.
31. Johnston S.L., Szigeti M., Cross M. et al.: Azithromycin for Acute Exacerbations of Asthma: The AZALEA Randomized Clinical Trial. JAMA Intern. Ned. 2016, 176(11): 1630-1637.
32. Brusselle G.G., Vanderstichele C., Jordens P. et al.: Azithromycin for prevention of exacerbations in severe asthma (AZISAST): A multicenter randomised double-blind placebo-controlled trial. Thorax 2013, 68: 322-329.
33. Chung K.F., Wenzel S.E., Brozek J.L. et al.: International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur. Respir. J. 2014, 43: 343-373.
34. Płusa T.: Współczesne leczenie chorych na przewlekłą obturacyjną chorobę płuc. Medpress, Warszawa 2012: 182-204.
35. Reinert R.R.: Clinical efficacy of ketolides in the treatment of respiratory tract infections. J. Antimicrob. Chemother. 2004, 53(6): 918-927.
36. Giamerellos-Bourboulis E.J.: Macrolides beyond the conventional antimicrobias: a class of potent immunomodulators. Int. J. Antimicrob. Agents 2010, 31(1): 12-20.
37. Hoffmann N., Lee B., Hentzer M.: Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(-/-) mice. Antimicrob. Agents Chemother. 2007, 51(10): 3677-3687.
38. Simpson J.L., Powell H., Baines K.J. et al.: The effect of azithromycin in adults with stable neutrophilic COPD: a double blind randomised, placebo controlled trial. PLoS One 2014, 9(8): e105609 [doi: 10.1371/journal.pone.0105609].
39. Ku T.S., Palanisamy S.K., Lee S.A.: Susceptibility of Candida albicans biofilms to azithromycin, tigecycline and vancomycin and the interaction between tigecycline and antifungals. Int. J. Antimicrob. Agents 2010, 36(5): 441-446.
40. Menzel M., Akbarshahi H., Bjermer L. et al.: Azithromycin induces anti-viral effects in cultured bronchial epithelial cells from COPD patients. Sci. Rep. 2016, 6: 28698 [doi: 10.1038/srep28698].
41. Ni W., Shao X., Cai X. et al.: Prophylactic use of macrolide antibiotics for the prevention of chronic obstructive pulmonary disease exacerbation: A meta-analysis. PLOS ONE 2015: 1-13 [doi: 10.1371/journal.pone.0121257].
42. Vermeersch K., Gabrovska M., Deslypere G. et al.: The Belgian trial with azithromycin for acute COPD exacerbations requiring hospitalization: an investigator-initiated study protocol for a multicenter, randomized, double-blind, placebo-controlled trial. Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11: 687-696.
43. Orriols R., Hernando R., Ferrer A. et al.: Eradication therapy against Pseudomonas aeruginosa in non-cystic fibrosis bronchiectasis. Respiration 2015, 90(4): 299-305.
44. Fjaellegaard K., Sin M.D., Browatzki A. et al.: Antibiotic therapy for stable non-CF bronchiectasis in adults – A systematic review. Chron. Respir. Dis. 2016 Aug 9. pii: 1479972316661923 [epub ahead of print].
45. Restrepo M.I., Keyt H., Reyes L.K.F.: Aerosolized antibiotics. Respir. Care 2015, 60(6): 762-773.
46. Reinert R.R.: Clinical efficacy of ketolides in the treatment of respiratory tract infections. J. Antimicrob. Chemother. 2004, 53(6): 918-927.
47. Płusa T.: Makrolidy w zakażeniach układu oddechowego. Medpress, Warszawa 2007.
48. Lesley C., Segreti J.: Choosing the right macrolide antibiotic. A guide to selection. Drugs 1997, 53: 349-357.
49. Amacher D.E., Schomaker S.J., Retsema J.A.: Comparison of the effects of the new azalide antibiotic, azithromycin, and erythromycin estolate on rat liver cytochrome P-450. Antimicrob. Agents Chemother. 1991, 35: 1186-1190.
50. Kudoh S., Azuma A., Yamamoto M. et al.: Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin. Am. J. Respir. Crit. Care Med. 1998, 157: 1829-1832.
51. Rubin B.K., Henke M.O.: Immunomodulatory activity and effectiveness of macrolides in chronic airway disease. Chest 2004, 125: 70-78.
52. Kadota J., Mukae H., Ishii H. et al.: Long-term efficacy and safety of clarithromycin treatment in patients with diffuse panbronchiolitis. Respir. Med. 2003, 97: 844-850.
53. Iino Y., Toriyama M., Kudo K. et al.: Erythromycin inhibition of lipopolysaccharide-stimulated tumor necrosis factor-alpha production by human monocytes in vitro. Ann. Otol. Rhinol. Laryngol. 1992, 101: 16-20.
54. Labro M.T.: Antibiotics as anti-inflammatory agents. Curr. Opin. Invest. Drugs 2002, 3: 61-68.
55. Labro M.T.: Cellular accumulation of macrolide antibiotics. Intracellular bioactivity. W: Schönfeld W., Kirst H. (red.): Macrolide Antibiotics. Birkhäuser Verlag AG, Bazylea 2002: 37-52.
56. Jain R., Hachem R.R., Morrell M.R. et al.: Azithromycin is associated with increased survival in lung transplant recipients with bronchiolitis obliterans syndrome. J. Heart Lung Transplant. 2010, 29(5): 531-537.
57. Vos R., Vanaudenaerde B.M., Ottevaere A. et al.: Long-term azithromycin therapy for bronchiolitis obliterans syndrome: divide and conquer? J. Heart Lung Transplant. 2010, 29(12): 1358-1368.
58. Jaffe A., Francis J., Rosenthal M. et al.: Long-term azithromycin may improve lung function in children with cystic fibrosis. Lancet 1998, 351: 420.
59. Wolter J., Seeney S., Bell S. et al.: Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomized trial. Thorax 2002, 57: 212-216.
60. Clement A., Tamalet A., Leroux E. et al.: Long term effects of azithromycin in patients with cystic fibrosis: A double blind, placebo controlled trial. Thorax 2006, 61(10): 895-902.
61. Kabra S.K., Pawaiya R., Lodha R. et al.: Long-term daily high and low doses of azithromycin in children with cystic fibrosis: a randomized controlled trial. J. Cyst. Fibros. 2010, 9(1): 17-23.
62. Saiman L., Anstead M., Mayer-Hamblett N. et al.; AZ0004 Azithromycin Study Group: Effect of azithromycin on pulmonary function in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 2010, 303(17): 1707-1715.