The effect of tyrosine kinase inhibitors used in the treatment of chronic myeloid leukemia on the cardiovascular system Review article
Main Article Content
Abstract
The use of tyrosine kinase inhibitors (TKIs) in the treatment of chronic myeloid leukemia has significantly improved the prognosis and outcomes for most patients. Clinical trials indicate that long-term CML therapy requires the introduction of second- or third-generation inhibitors in approximately 40–50% of cases. Effective in the event of imatinib resistance or intolerance, the drugs can also be used as a first- -line treatment, leading to a faster, deeper molecular response than imatinib in a greater proportion of patients, and thus creating a greater chance for long-term treatment-free remission. TKIs, however, have also been observed to cause significant late adverse effects, including cardiovascular complications, which may raise certain safety concerns. The excellent treatment outcomes achieved with tyrosine kinase inhibitors have led to a gradual increase in the number and age of treated patients, and the associated higher incidence and severity of age-related co-morbidities such as diabetes, hypercholesterolemia, atherosclerosis, ischemic heart disease, hypertension, and congestive heart failure, which raise the risk of treatment-related cardiovascular complications. The article discusses the effects of individual TKIs on the pathogenesis of cardiovascular complications and presents the results of clinical trials that studied their impact on the incidence of such events.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright: © Medical Education sp. z o.o. This is an Open Access article distributed under the terms of the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). License (https://creativecommons.org/licenses/by-nc/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Address reprint requests to: Medical Education, Marcin Kuźma (marcin.kuzma@mededu.pl)
References
2. Shah NP, Guilhot F, Cortes JE et al. Long-term outcome with dasatinib after imatinib failure in chronic-phase chronic myeloid leukemia: follow-up of a phase 3 study. Blood 2014; 123(15): 2317-2324.
3. le Coutre PD, Giles FJ, Pinilla-Ibarz J et al. Nilotinib in Imatinib-Resistant or -Intolerant Patients (pts) with Chronic Myeloid Leukemia in Chronic Phase (CML-CP): 48-Month Follow-up Results of a Phase 2 Study. ASH Annual Meeting Abstracts 2011; 118(21): 3770.
4. Cortes JE, Jones D, O’Brien S et al. Results of dasatinib therapy in patients with early chronic-phase chronic myeloid leukemia. J Clin Oncol 2010; 28(3): 398-404.
5. Saglio G, Kim DW, Issaragrisil S et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med 2010; 362(24): 2251-2259.
6. Kantarjian H, Shah NP, Hochhaus A et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2010; 362(24): 2260-2270.
7. Cortes JE, Saglio G, Kantarjian H et al. Final 5-Year Study Results of DASISION: The Dasatinib Versus Imatinib Study in Treatment-Naive Chronic Myeloid Leukemia Patients Trial. J Clin Oncol 2016; 34(20): 2333-2340.
8. Final Study Results of DASISION (Dasatinib Versus Imatinib in Newly Diagnosed Chronic Myeloid Leukemia in Chronic Phase CML). European School of Hematology meeting Philadelphia 2014.
9. Deininger MW, Kopecky KJ, Radich JP et al. Imatinib 800 mg daily induces deeper molecular responses than imatinib 400 mg daily: results of SWOG S0325, an intergroup randomized PHASE II trial in newly diagnosed chronic phase chronic myeloid leukaemia. Br J Haematol 2014; 164(2): 223-232.
10. Cortes JE, Kim DW, Kantarjian HM et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: results from the BELA trial. J Clin Oncol 2012; 30(28): 3486-3492.
11. Giles FJ, Mauro MJ, Hong F et al. Rates of peripheral arterial occlusive disease in patients with chronic myeloid leukemia in the chronic phase treated with imatinib, nilotinib, or non-tyrosine kinase therapy: a retrospective cohort analysis. Leukemia 2013; 27(6): 1310-1315.
12. Radich JP, Kopecky KJ, Appelbaum FR et al. A randomized trial of dasatinib 100 mg versus imatinib 400 mg in newly diagnosed chronic-phase chronic myeloid leukemia. Blood 2012; 120(19): 3898-3905.
13. Giles FJ, le Coutre PD, Pinilla-Ibarz J et al. Nilotinib in imatinib-resistant or imatinib-intolerant patients with chronic myeloid leukemia in chronic phase: 48-month follow-up results of a phase II study. Leukemia 2013; 27(1): 107-112.
14. Huang X, Cortes J, Kantarjian H. Estimations of the increasing prevalence and plateau prevalence of chronic myeloid leukemia in the era of tyrosine kinase inhibitor therapy. Cancer 2012; 118(12): 3123-3127.
15. Jaiswal S, Fontanillas P, Flannick J et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014; 371(26): 2488-2498.
16. Breccia M, Muscaritoli M, Aversa Z et al. Imatinib Mesylate May Improve Fasting Blood Glucose in Diabetic Ph+ Chronic Myelogenous Leukemia Patients Responsive to Treatment. J Clin Oncol 2004; 22(22): 4653-4655.
17. Breccia M, Muscaritoli M, Cannella L et al. Modifications of fasting glucose values as first sign of resistance in chronic myeloid leukemia chronic phase patients during imatinib treatment. Leukemia Research 2010; 34(5): e122-e124.
18. Mariani S, Tornaghi L, Sassone M et al. Imatinib does not substantially modify the glycemic profile in patients with chronic myeloid leukaemia. Leukemia Research 2010; 34(1): e5-e7.
19. Breccia M, Molica M, Alimena G. How tyrosine kinase inhibitors impair metabolism and endocrine system function: A systematic updated review. Leukemia Research 2014; 38(12): 1392-1398.
20. Fitter S, Vandyke K, Gronthos S, Zannettino ACW. Suppression of PDGF-induced PI3 kinase activity by imatinib promotes adipogenesis and adiponectin secretion. J Mol Endocrinol 2012; 48(3): 229-240.
21. Gottardi M, Manzato E, Gherlinzoni F. Imatinib and Hyperlipidemia. N Engl J Med 2005; 353(25): 2722-2723.
22. Franceschino A, Tornaghi L, Benemacher V et al. Alterations in creatine kinase, phosphate and lipid values in patients with chronic myeloid leukemia during treatment with imatinib. Haematologica 2008; 93(2): 317-318.
23. Blatt K, Cerny-Reiterer S, Schwaab J et al. Identification of the Ki-1 antigen (CD30) as a novel therapeutic target in systemic mastocytosis. Blood 2015; 126(26): 2832-2841.
24. Pouwer MG, Pieterman EJ, Verschuren L et al. The BCR-ABL1 Inhibitors Imatinib and Ponatinib Decrease Plasma Cholesterol and Atherosclerosis, and Nilotinib and Ponatinib Activate Coagulation in a Translational Mouse Model. Front Cardiovasc Med 2018; 5: 55.
25. Fitter S, Vandyke K, Schultz CG et al. Plasma adiponectin levels are markedly elevated in imatinib-treated chronic myeloid leukemia (CML) patients: a mechanism for improved insulin sensitivity in type 2 diabetic CML patients? J Clin Endocrinol Metab 2010; 95(8): 3763-3767.
26. Agostino NM, Chinchilli VM, Lynch CJ et al. Effect of the tyrosine kinase inhibitors (sunitinib, sorafenib, dasatinib, and imatinib) on blood glucose levels in diabetic and nondiabetic patients in general clinical practice. J Oncol Pharm Pract 2011; 17(3): 197-202.
27. Gologan R, Constantinescu G, Georgescu D et al. Hypolipemiant besides antileukemic effect of imatinib mesylate. Leuk Res 2009; 33(9): 1285-1287.
28. Valent P, Hadzijusufovic E, Schernthaner GH et al. Vascular safety issues in CML patients treated with BCR/ABL1 kinase inhibitors. Blood 2015; 125(6): 901-906.
29. Kerkela R, Grazette L, Yacobi R et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 2006; 12(8): 908-916.
30. Damrongwatanasuk R, Fradley MG. Cardiovascular Complications of Targeted Therapies for Chronic Myeloid Leukemia. Curr Treat Options Cardiovasc Med 2017; 19(4): 24.
31. Maharsy W, Aries A, Mansour O et al. Ageing is a risk factor in imatinib mesylate cardiotoxicity. Eur J Heart Fail 2014; 16(4): 367-376.
32. Ran HH, Zhang., Lu XC et al. Imatinib-induced decompensated heart failure in an elderly patient with chronic myeloid leukemia: case report and literature review. J Geriatr Cardiol 2012; 9(4): 411-414.
33. Verweij J, Casali PG, Kotasek D et al. Imatinib does not induce cardiac left ventricular failure in gastrointestinal stromal tumours patients: analysis of EORTC-ISG-AGITG study 62005. Eur J Cancer 2007; 43(6): 974-978.
34. Herman E, Knapton A, Zhang J et al. The utility of serum biomarkers to detect myocardial alterations induced by Imatinib in rats. Pharmacol Res Perspect 2014; 2(1): e00015.
35. Marslin G, Revina AM, Khandelwal VK et al. Delivery as nanoparticles reduces imatinib mesylate-induced cardiotoxicity and improves anticancer activity. Int J Nanomedicine 2015; 10: 3163-3170.
36. Fujioka I, Takaku T, Iriyama N et al. Features of vascular adverse events in Japanese patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors: a retrospective study of the CML Cooperative Study Group database. Ann Hematol 2018; 97(11): 2081-2088.
37. Jang SW, Ihm SH, Choo EH et al. Imatinib mesylate attenuates myocardial remodeling through inhibition of platelet-derived growth factor and transforming growth factor activation in a rat model of hypertension. Hypertension 2014; 63(6): 1228-1234.
38. Shah AM, Campbell P, Rocha GQ et al. Effect of imatinib as add-on therapy on echocardiographic measures of right ventricular function in patients with significant pulmonary arterial hypertension. Eur Heart J 2015; 36(10): 623-632.
39. Koning NJ, de Lange F, van Meurs M et al. Reduction of vascular leakage by imatinib is associated with preserved microcirculatory perfusion and reduced renal injury markers in a rat model of cardiopulmonary bypass. Br J Anaesth 2018; 120(6): 1165-1175.
40. Hadzijusufovic E, Albrecht-Schgoer K, Huber K et al. Nilotinib-induced vasculopathy: identification of vascular endothelial cells as a primary target site. Leukemia 2017; 31(11): 2388-2397.
41. Rocha A, Azevedo I, Soares R. Anti-angiogenic effects of imatinib target smooth muscle cells but not endothelial cells. Angiogenesis 2007; 10(4): 279-286.
42. Vallieres K, Petitclerc E, Laroche G. On the ability of imatinib mesylate to inhibit smooth muscle cell proliferation without delaying endothelialization: an in vitro study. Vascul Pharmacol 2009; 51(1): 50-56.
43. Vrekoussis T, Stathopoulos EN, De Giorgi U et al. Modulation of vascular endothelium by imatinib: a study on the EA.hy 926 endothelial cell line. J Chemother 2006; 18(1): 56-65.
44. Zhou L, Sun X, Huang Z et al. Imatinib Ameliorated Retinal Neovascularization by Suppressing PDGFR-alpha and PDGFR-beta. Cell Physiol Biochem 2018; 48(1): 263-273.
45. Aman J, van Bezu J, Damanafshan A et al. Effective treatment of edema and endothelial barrier dysfunction with imatinib. Circulation 2012; 126(23): 2728-2738.
46. Chislock EM, Pendergast AM. Abl family kinases regulate endothelial barrier function in vitro and in mice. PLoS One 2013; 8(12): e85231.
47. Letsiou E, Rizzo A.N., Sammani S. et al.: Differential and opposing effects of imatinib on LPS- and ventilator induced lung injury. Am J Physiol Lung Cell Mol Physiol 2015; 308(3): L259-69.
48. Rizzo AN, Aman J, van Nieuw Amerongen GP, Dudek SM. Targeting Abl kinases to regulate vascular leak during sepsis and acute respiratory distress syndrome. Arterioscler Thromb Vasc Biol 2015; 35(5): 1071-1079.
49. Rizzo AN, Sammani S, Esquinca AE et al. Imatinib attenuates inflammation and vascular leak in a clinically relevant two-hit model of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2015; 309(11): L1294-304.
50. Weisberg E, Manley PW, Breitenstein W et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 2005; 7(2): 129-141.
51. Weisberg E, Manley P, Mestan J et al. AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br J Cancer 2006; 94(12): 1765-1769.
52. Manley PW, Drueckes P, Fendrich G et al. Extended kinase profile and properties of the protein kinase inhibitor nilotinib. Biochim Biophys Acta 2010; 1804(3): 445-453.
53. Manley PW, Stiefl N, Cowan-Jacob SW et al. Structural resemblances and comparisons of the relative pharmacological properties of imatinib and nilotinib. Bioorg Med Chem 2010; 18(19): 6977-6986.
54. Medeiros BC, Possick J, Fradley M. Cardiovascular, pulmonary, and metabolic toxicities complicating tyrosine kinase inhibitor therapy in chronic myeloid leukemia: Strategies for monitoring, detecting, and managing. Blood Rev 2018; 32(4): 289-299.
55. Nicolini FE, Turkina A, Shen ZX et al. Expanding Nilotinib Access in Clinical Trials (ENACT): An open-label, multicenter study of oral nilotinib in adult patients with imatinib resistant or imatinib-intolerant philadelphia chromosome-positive chronic myeloid leukemia in the chronic phase. Cancer 2012; 118(1): 118-126.
56. Hochhaus A, Saglio G, Hughes TP et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia 2016; 30(5): 1044-1054.
57. Iurlo A, Orsi E, Cattaneo D et al. Effects of first- and second-generation tyrosine kinase inhibitor therapy on glucose and lipid metabolism in chronic myeloid leukemia patients: a real clinical problem? Oncotarget 2015; 6(32): 33944-33951.
58. Racil Z, Razga F, Drapalova J et al. Mechanism of impaired glucose metabolism during nilotinib therapy in patients with chronic myelogenous leukemia. Haematologica 2013; 98(10): e124-126.
59. Frasca F, Pandini G, Malaguarnera R et al. Role of c-Abl in Directing Metabolic versus Mitogenic Effects in Insulin Receptor Signaling. J Biol Chem 2007; 282(36): 26077-26088.
60. Rea D, Mirault T, Cluzeau T et al. Early onset hypercholesterolemia induced by the 2nd-generation tyrosine kinase inhibitor nilotinib in patients with chronic phase-chronic myeloid leukemia. Haematologica 2014; 99(7): 1197-1203.
61. Aichberger KJ, Herndlhofer S, Schernthaner GH et al. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML. Am J Hematol 2011; 86(7): 533-539.
62. Gambacorti-Passerini C, Piazza R. Choosing the right TKI for chronic myeloid leukemia: when the truth lies in “long-term” safety and efficacy. Am J Hematol 2011; 86(7): 531-532.
63. Hochhaus A, Rosti G, Cross NC et al. Frontline nilotinib in patients with chronic myeloid leukemia in chronic phase: results from the European ENEST1st study. Leukemia 2016; 30(1): 57-64.
64. Rousselot P, Charbonnier A, Cony-Makhoul P et al. Loss of major molecular response as a trigger for restarting tyrosine kinase inhibitor therapy in patients with chronic-phase chronic myelogenous leukemia who have stopped imatinib after durable undetectable disease. J Clin Oncol 2014; 32(5): 424-430.
65. Cortes J, Mauro M, Steegmann JL et al. Cardiovascular and pulmonary adverse events in patients treated with BCR-ABL inhibitors: Data from the FDA Adverse Event Reporting System. Am J Hematol 2015; 90(4): E66-72.
66. Racil Z, Koritakova E, Sacha T et al. Insulin resistance is an underlying mechanism of impaired glucose metabolism during nilotinib therapy. Am J Hematol 2018; 93(10): E342-E345.
67. Breccia M, Muscaritoli M, Cannella L et al. Fasting glucose improvement under dasatinib treatment in an accelerated phase chronic myeloid leukemia patient unresponsive to imatinib and nilotinib. Leukemia Research 2008; 32(10): 1626-1628.
68. Ono K, Suzushima H, Watanabe Y et al. Rapid Amelioration of Hyperglycemia Facilitated by Dasatinib in a Chronic Myeloid Leukemia Patient with type 2 Diabetes Mellitus. Intern Med 2012; 51(19): 2763-2766.
69. Cheng H, Straub SG, Sharp GWG. Inhibitory role of Src family tyrosine kinases on Ca 2+-dependent insulin release. Am J Physiol Endocrinol Metab 2007; 292(3): E845-52. Epub 2006 Nov 22.
70. Brummendorf TH, Cortes JE, de Souza CA et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukaemia: results from the 24-month follow-up of the BELA trial. Br J Haematol 2015; 168(1): 69-81.
71. Boschelli DH, Ye F, Wang YD et al. Optimization of 4-phenylamino-3-quinolinecarbonitriles as potent inhibitors of Src kinase activity. J Med Chem 2001; 44(23): 3965-3977.
72. Puttini M, Coluccia AML, Boschelli F et al. In vitro and In vivo Activity of SKI-606, a Novel Src-Abl Inhibitor, against Imatinib-Resistant Bcr-Abl+ Neoplastic Cells. Cancer Research 2006; 66(23): 11314-11322.
73. Summy JM, Gallick GE. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev. 2003; 22(4): 337-358.
74. Gover-Proaktor A, Granot G, Pasmanik-Chor M et al. Bosutinib, dasatinib, imatinib, nilotinib, and ponatinib differentially affect the vascular molecular pathways and functionality of human endothelial cells. Leukemia Lymphoma 2018: 1-11.
75. Cortes JE, Jean Khoury H, Kantarjian H et al. Long-term evaluation of cardiac and vascular toxicity in patients with Philadelphia chromosome-positive leukemias treated with bosutinib: Bosutinib Cardiac and Vascular Toxicity in Ph+ Leukemias. Am J Hematol 2016; 91(6): 606-616.
76. Kim SR, Suh W. Beneficial effects of the Src inhibitor, dasatinib, on breakdown of the blood-retinal barrier. Arch Pharm Res 2017; 40(2): 197-203.
77. Castagnetti F, Gugliotta G, Breccia M et al.; on behalf of the GCMLWP: Long-term outcome of chronic myeloid leukemia patients treated frontline with imatinib. Leukemia 2015; 29(9): 1823-1831.
78. Sasaki K, Jabbour EJ, Ravandi F et al. Hyper-CVAD plus ponatinib versus hyper-CVAD plus dasatinib as frontline therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: A propensity score analysis. Cancer 2016; 122(23): 3650-3656.
79. Phan C, Jutant EM, Tu L et al. Dasatinib increases endothelial permeability leading to pleural effusion. Eur Respir J 2018; 51(1).
80. Porkka K, Khoury HJ, Paquette RL et al. Dasatinib 100 mg once daily minimizes the occurrence of pleural effusion in patients with chronic myeloid leukemia in chronic phase and efficacy is unaffected in patients who develop pleural effusion. Cancer 2010; 116(2): 377-386.
81. Godinas L, Guignabert C, Seferian A et al. Tyrosine kinase inhibitors in pulmonary arterial hypertension: a double-edge sword? Semin Respir Crit Care Med 2013; 34(5): 714-724.
82. Jabbour E, Kantarjian HM, Saglio G et al. Early response with dasatinib or imatinib in chronic myeloid leukemia: 3-year follow-up from a randomized phase 3 trial (DASISION). Blood 2014; 123(4): 494-500.
83. Orlandi EM, Rocca B, Pazzano AS, Ghio S. Reversible pulmonary arterial hypertension likely related to long term, low-dose dasatinib treatment for chronic myeloid leukaemia. Leuk Res 2012; 36(1): e4-6.
84. Dumitrescu D, Seck C, ten Freyhaus H et al. Fully reversible pulmonary arterial hypertension associated with dasatinib treatment for chronic myeloid leukaemia. Eur Respir J 2011; 38(1): 218-220.
85. Force RW. How do calcium channel blockers compare with beta-blockers, diuretics, and angiotensin converting enzyme inhibitors for hypertension? J Fam Pract 2002; 51(5): 482.
86. Douxfils J, Haguet H, Mullier F et al. Association Between BCR-ABL Tyrosine Kinase Inhibitors for Chronic Myeloid Leukemia and Cardiovascular Events, Major Molecular Response, and Overall Survival: A Systematic Review and Meta-analysis. JAMA Oncol 2016.
87. Chaar M, Kamta J, Ait-Oudhia S. Mechanisms, monitoring, and management of tyrosine kinase inhibitors associated cardiovascular toxicities. Onco Targets Ther 2018; 11: 6227-6237.
88. Dong C, Li B, Li Z et al. Dasatinib-loaded albumin nanoparticles possess diminished endothelial cell barrier disruption and retain potent anti-leukemia cell activity. Oncotarget 2016; 7(31): 49699-49709.
89. Roos CM, Zhang B, Palmer AK et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 2016; 15(5): 973-977.
90. Balasubramanian S, Pleasant DL, Kasiganesan H et al. Dasatinib Attenuates Pressure Overload Induced Cardiac Fibrosis in a Murine Transverse Aortic Constriction Model. PLoS One 2015; 10(10): e0140273.
91. Yi JS, Huang Y, Kwaczala AT et al. Low-dose dasatinib rescues cardiac function in Noonan syndrome. JCI Insight 2016; 1(20): e90220.
92. Dasgupta SK, Le A, Vijayan KV, Thiagarajan P. Dasatinib inhibits actin fiber reorganization and promotes endothelial cell permeability through RhoA-ROCK pathway. Cancer Med 2017; 6(4): 809-818.
93. Seo S, Suh W. Antiangiogenic effect of dasatinib in murine models of oxygen-induced retinopathy and laser induced choroidal neovascularization. Mol Vis 2017; 23: 823-831.
94. Kreutzman A, Colom-Fernandez B, Jimenez AM et al. Dasatinib Reversibly Disrupts Endothelial Vascular Integrity by Increasing Non-Muscle Myosin II Contractility in a ROCK-Dependent Manner. Clin Cancer Res 2017; 23(21): 6697-6707.
95. Nautiyal J, Banerjee S, Kanwar SS et al. Curcumin enhances dasatinib-induced inhibition of growth and transformation of colon cancer cells. Int J Cancer 2011; 128(4): 951-961.
96. Sukegawa M, Wang X, Nishioka C et al. The BCR/ABL tyrosine kinase inhibitor, nilotinib, stimulates expression of IL-1beta in vascular endothelium in association with downregulation of miR-3p. Leuk Res 2017; 58: 83-90.
97. Paez-Mayorga J, Chen AL, Kotla S et al. Ponatinib Activates an Inflammatory Response in Endothelial Cells via ERK5 SUMOylation. Front Cardiovasc Med 2018; 5: 125.
98. Gover-Proaktor A, Granot G, Shapira S et al. Ponatinib reduces viability, migration, and functionality of human endothelial cells. Leukemia Lymphoma 2017; 58(6): 1455-1467.
99. Ai N, Chong CM, Chen W et al. Ponatinib exerts anti-angiogenic effects in the zebrafish and human umbilical vein endothelial cells via blocking VEGFR signaling pathway. Oncotarget 2018; 9(62): 31958-31970.
100. Latagliata R, Carmosino I, Vozella F et al. Impact of exclusion criteria for the DASISION and ENESTnd trials in the front-line treatment of a ‘real-life’patient population with chronic myeloid leukaemia. Hematol Oncol 2017; 35(2): 232-236.
101. Saglio G, le Coutre P, Cortes J et al. Evaluation of cardiovascular ischemic event rates in dasatinib-treated patients using standardized incidence ratios. Ann Hematol 2017; 96(8): 1303-1313.
102. Yang EH, Watson KE, Herrmann J. Should vascular effects of newer treatments be addressed more completely? Future Oncol 2015; 11(14): 1995-1998.
103. Szmit S, Jędrzejczak WW, Torbicki A. Targeted therapies for chronic myeloid leukemia and cardiovascular system. OncoReview 2013; 3(11): 163-176.
104. Medeiros BC, Possick J, Fradley M. Cardiovascular, pulmonary, and metabolic toxicities complicating tyrosine kinase inhibitor therapy in chronic myeloid leukemia: Strategies for monitoring, detecting, and managing. Blood Rev 2018; 32(4): 289-299.
105. Steegmann JL, Baccarani M, Breccia M et al. European LeukemiaNet recommendations for the management and avoidance of adverse events of treatment in chronic myeloid leukaemia. Leukemia 2016; 30(8): 1648-1671.
106. Cortes JE, Saglio G, Kantarjian HM et al. Final 5-year study results of DASISION: the Dasatinib Versus Imatinib Study in Treatment-Naive Chronic Myeloid Leukemia Patients trial. J Clin Oncol 2016; 34(20): 2333-2240.
107. Larson RA, Hochhaus A, Hughes TP et al. Nilotinib vs imatinib in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase: ENESTnd 3-year follow-up. Leukemia 2012; 26(10): 2197-2203.
108. Cortes JE, Kim DW, Pinilla-Ibarz J et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med 2013; 369(19): 1783-1796.
109. Hoglund M, Sandin F, Simonsson B. Epidemiology of chronic myeloid leukaemia: an update. Ann Hematol 2015; 94 suppl 2: S241-247.
110. Steegmann JL, Baccarani M, Breccia M et al. European LeukemiaNet recommendations for the management and avoidance of adverse events of treatment in chronic myeloid leukaemia. Leukemia 2016; 30(8): 1648-1671.
111. Cortes JE, Kim DW, Pinilla-Ibarz J et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med 2013; 369(19): 1783-1796.
112. Dorer DJ, Knickerbocker RK, Baccarani M et al. Impact of dose intensity of ponatinib on selected adverse events: Multivar iate analyses from a pooled population of clinical trial patients. Leuk Res 2016; 48: 84-91.
113. Cortes JE, Jean Khoury H, Kantarjian H et al. Long-term evaluation of cardiac and vascular toxicity in patients with Philadelphia chromosome-positive leukemias treated with bosutinib. Am J Hematol 2016; 91(6): 606-616.
114. SprycelR (dasatinib): Full Prescribing Information. Bristol-Myers Squibb, Princeton, NJ, 2016.
115. Kim TD, le Coutre P, Schwarz M et al. Clinical cardiac safety profile of nilotinib. Haematologica 2012; 97(6): 883-889.
116. Atallah E, Durand JB, Kantarjian H, Cortes J. Congestive heart failure is a rare event in patients receiving imatinib therapy. Blood 2007; 110(4): 1233-1237.
117. Shah R.R., Morganroth J., Shah D.R.: Cardiovascular safety of tyrosine kinase inhibitors: with a special focus on cardiac repolarisation (QT interval). Drug Saf 2013; 36(5): 295-316.
118. Sonnichsen D, Dorer DJ, Cortes J et al. Analysis of the potential effect of ponatinib on the QTc interval in patients with refractory hematological malignancies. Cancer Chemother Pharmacol 2013; 71(6): 1599-1607.
119. Garnock-Jones KP. Nilotinib: in the first-line treatment of newly diagnosed Philadelphia chromosome-positive chronic myeloid leukaemia in chronic phase. Drugs 2011; 71(12): 1579-1590.
120. Kim TD, le Coutre P, Schwarz M et al. Clinical cardiac safety profile of nilotinib. Haematologica 2012; 97(6): 883-889.
121. Kantarjian H, Giles F, Wunderle L et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 2006; 354(24): 2542-2551.
122. Fradley MG, Moslehi J. QT Prolongation and Oncology Drug Development. Card Electrophysiol Clin 2015; 7(2): 341-355.
123. Hochhaus A, Rosti G, Cross NC et al. Frontline nilotinib in patients with chronic myeloid leukemia in chronic phase: results from the European ENEST1st study. Leukemia 2016; 30(1): 57-64.
124. Hochhaus A, Saglio G, Hughes TP et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia 2016; 30(5): 1044-1054.
125. Lenihan DJ, Kowey PR. Overview and management of cardiac adverse events associated with tyrosine kinase inhibitors. Oncologist 2013; 18(8): 900-908.
126. Yap YG, Camm AJ. Drug induced QT prolongation and torsades de pointes. Heart 2003; 89(11): 1363-1372.
127. Jabbour E, Deininger M, Hochhaus A. Management of adverse events associated with tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia. Leukemia 2011; 25(2): 201-210.
128. TASIGNAR (nilotinib) Full Prescribing Information. East Hanover, NJ: Novartis Pharmaceuticals Corporation; 2016.
129. Galie N, Humbert M, Vachiery JL et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J 2015; 46(4): 903-975.
130. Montani D, Bergot E, Gunther S et al. Pulmonary arterial hypertension in patients treated by dasatinib. Circulation 2012; 125(17): 2128-2137.
131. Quintas-Cardama A, Kantarjian H, O’brien S et al. Pleural effusion in patients with chronic myelogenous leukemia treated with dasatinib after imatinib failure. J Clin Oncol 2007; 25(25): 3908-3914.
132. Guignabert C, Phan C, Seferian A et al. Dasatinib induces lung vascular toxicity and predisposes to pulmonary hypertension. J Clin Invest 2016; 126(9): 3207-3218.
133. Shah NP, Wallis N, Farber HW et al. Clinical features of pulmonary arterial hypertension in patients receiving dasatinib. Am J Hematol 2015; 90(11): 1060-1064.
134. Szmit S. Is dasatinib-related pulmonary hypertension a clinical concern? Future Oncol 2015; 11(18): 2491-2494.
135. Quilot FM, Georges M, Favrolt N et al. Pulmonary hypertension associated with ponatinib therapy. Eur Respir J 2016; 47(2): 676-679.
136. Seegobin K, Babbar A, Ferreira J et al. A case of worsening pulmonary arterial hypertension and pleural effusions by bosutinib after prior treatment with dasatinib. Pulm Circ 2017; 7(4): 808-812.
137. Riou M, Seferian A, Savale L et al. Deterioration of pulmonary hypertension and pleural effusion with bosutinib following dasatinib lung toxicity. Eur Respir J 2016; 48(5): 1517-1519.
138. Weatherald J, Chaumais MC, Montani D. Pulmonary arterial hypertension induced by tyrosine kinase inhibitors. Curr Opin Pulm Med 2017; 23(5): 392-397.
139. Hickey PM, Thompson AA, Charalampopoulos A et al. Bosutinib therapy resulting in severe deterioration of pre-existing pulmonary arterial hypertension. Eur Respir J 2016; 48(5): 1514-1516.
140. Zamorano JL, Lancellotti P, Rodriguez Munoz D et al; Authors/Task Force Members; ESC Committee for Practice Guidelines (CPG). The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Eur Heart J 2016; 37(36): 2768-2801.
141. Moguillansky NI, Fakih HAM, Wingard JR. Bosutinib induced pleural effusions: Case report and review of tyrosine kinase inhibitors induced pulmonary toxicity. Respir Med Case Rep 2017; 21: 154-157.
142. Wilk M, Szmit S. Cardiovascular complications of antiangiogenic therapy in ovarian cancer patients. Oncol Clin Pract 2017; 13: 49-56.
143. Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med 2016; 375(15): 1457-1467.
144. Breccia M, Pregno P, Spallarossa P et al. Identification, prevention and management of cardiovascular risk in chronic myeloid leukaemia patients candidate to ponatinib: an expert opinion. Ann Hematol 2017; 96(4): 549-558.
145. ICLUSIGR (ponatinib) Full Prescribing Information. Cambridge, MA, USA: ARIAD Pharmaceuticals, Inc 2016.
146. Hochhaus A, Saglio G, Hughes TP et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia 2016; 30(5): 1044-1054.
147. Cortes JE, Jean Khoury H, Kantarjian H et al. Long-term evaluation of cardiac and vascular toxicity in patients with Philadelphia chromosome-positive leukemias treated with bosutinib. Am J Hematol 2016; 91(6): 606-616.
148. Maitland ML, Bakris GL, Black HR et al. Initial assessment, surveillance, and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. J Natl Cancer Inst 2010; 102(9): 596-604.
149. Szmit S, Filipiak KJ, Zaborowska M et al. Arterial hypertension related to sunitinib. OncoReview 2011; 3(3): 202-216.
150. Hayman SR, Leung N, Grande JP, Garovic VD. VEGF inhibition, hypertension, and renal toxicity. Curr Oncol Rep 2012; 14(4): 285-294.
151. Alhawiti N, Burbury KL, Kwa FA et al. The tyrosine kinase inhibitor, nilotinib potentiates a prothrombotic state. Thromb Res 2016; 145: 54-64.
152. Hadzijusufovic E, Albrecht-Schgoer K, Huber K et al. Nilotinib-induced vasculopathy: identification of vascular endothelial cells as a primary target site. Leukemia 2017; 31(11): 2388-2397.
153. Tefferi A. Nilotinib treatment-associated accelerated atherosclerosis: when is the risk justified? Leukemia 2013; 27(9): 1939-1940.
154. Aichberger KJ, Herndlhofer S, Schernthaner GH et al. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML. Am J Hematol 2011; 86(7): 533-539.
155. Tefferi A, Letendre L. Nilotinib treatment-associated peripheral artery disease and sudden death: yet another reason to stick to imatinib as frontline therapy for chronic myelogenous leukemia. Am J Hematol 2011; 86(7): 610-611.
156. Levato L, Cantaffa R, Kropp MG et al. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in chronic myeloid leukemia: a single institution study. Eur J Haematol 2013; 90(6): 531-532.
157. Cortes JE, Saglio G, Kantarjian HM et al. Final 5-year study results of DASISION: the Dasatinib Versus Imatinib Study in Treatment-Naive Chronic Myeloid Leukemia Patients trial. J Clin Oncol 2016; 34(20): 2333-2340.
158. Douxfils J, Haguet H, Mullier F et al. Association Between BCR-ABL Tyrosine Kinase Inhibitors for Chronic Myeloid Leukemia and Cardiovascular Events, Major Molecular Response, and Overall Survival: A Systematic Review and Meta-analysis. JAMA Oncol 2016. DOI: 10.1001/jamaoncol.2015.5932 [Epub ahead of print].
159. Gugliotta G, Castagnetti F, Breccia M et al. Long-term outcome of a phase 2 trial with nilotinib 400 mg twice daily in first-line treatment of chronic myeloid leukemia. Haematologica 2015; 100(9): 1146-1150.
160. Larson RA, Kim DW, Issaragrilsil S et al. Efficacy and safety of nilotinib vs imatinib in patients with newly diagnosed chronic myeloid leukemia in chronic phase: Long-term followup of ENESTnd. Blood 2014; 124: 4541.
161. Gora-Tybor J, Medras E, Calbecka M et al. Real-life comparison of severe vascular events and other nonhematological complications in patients with chronic myeloid leukemia undergoing second-line nilotinib or dasatinib treatment. Leukemia Lymphoma 2015; 56(8): 2309-2314.
162. Massaro F, Molica M, Breccia M. Ponatinib: A Review of Efficacy and Safety. Curr Cancer Drug Targets 2018; 18(9): 847-856.
163. Jain P, Kantarjian HM, Gonzalez GN et al. Ponatinib as first-line treatment for patients with chronic myeloid leukaemia in chronic phase: A phase 2 study. Lancet Haematol 2015; 2(9): 376-383.
164. Lipton JH, Chuah C, Guerci-Bresler A et al; EPIC investigators. Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: an international, randomised, open label, phase 3 trial. Lancet Oncol 2016; 17(5): 612-621.
165. Cortes JE, Kim DW, Pinilla-Ibarz J et al; PACE Investigators: A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med 2013; 369(29): 1783-1796.
166. Cortes JE, Kim DW, Pinilla-Ibarz J et al. Long-term follow-up of ponatinib efficacy and safety in the phase 2 PACE trial [abstract]. Blood 2014; 124: 3135.
167. Cortes J, Pinilla-Ibarz J, Le Coutre P et al. 4-Year results from the pivotal phase 2 PACE trial: efficacy and safety in heavily pretreated leukemia patients [abstract]. Clin Lymphoma Myeloma Leuk 2016; 16: S56.
168. Larson RA, Hochhaus A, Hughes TP et al. Nilotinib vs imatinib in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase: ENESTnd 3-year follow-up. Leukemia 2012; 26(10): 2197-2203.
169. Hochhaus A, Saglio G, Hughes TP et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia 2016; 30(5): 1044-1054.
170. Gora-Tybor J, Medras E, Calbecka M et al. Real-life comparison of severe vascular events and other nonhematological complications in patients with chronic myeloid leukemia undergoing second-line nilotinib or dasatinib treatment. Leuk Lymphoma 2015; 56(8): 2309-2314.
171. Lipton JH, Chuah C, Guerci-Bresler A et al. Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: an international, randomised, open-label, phase 3 trial. Lancet Oncol 2016; 17(5): 612-621.
172. Gambacorti-Passerini C, Cortes JE, Lipton JH et al. Safety of bosutinib versus imatinib in the phase 3 BELA trial in newly diagnosed chronic phase chronic myeloid leukemia. Am J Hematol 2014; 89(10): 947-953.
173. Giles FJ, Mauro MJ, Hong F et al. Rates of peripheral arterial occlusive disease in patients with chronic myeloid leukemia in the chronic phase treated with imatinib, nilotinib, or non-tyrosine kinase therapy: a retrospective cohort analysis. Leukemia 2013; 27(6): 1310-1315.
174. Pasvolsky O, Leader A, Iakobishvilli Z et al. Tyrosine kinase inhibitor associated vascular toxicity in chronic myeloid leukemia. Cardio-Oncology 2015; 1: 5.
175. Giles FJ, Mauro MJ, Hong F et al. Rates of peripheral arterial occlusive disease in patients with chronic myeloid leukemia in the chronic phase treated with imatinib, nilotinib, or non-tyrosine kinase therapy: a retrospective cohort analysis. Leukemia 2013; 27(6): 1310-1315.
176. Kim TD, Rea D, Schwarz M et al. Peripheral artery occlusive disease in chronic phase chronic myeloid leukemia patients treated with nilotinib or imatinib. Leukemia 2013; 27: 1316-1321.
177. Steegmann JL, Baccarani M, Breccia M et al. European LeukemiaNet recommendations for the management and avoidance of adverse events of treatment in chronic myeloid leukaemia. Leukemia 2016; 30(8): 1648-1671.
178. Moslehi JJ, Deininger M. Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. J Clin Oncol 2015; 33(35): 4210-4218.
179. Valent P, Hadzijusufovic E, Schernthaner GH et al. Vascular safety issues in CML patients treated with BCR/ABL1 kinase inhibitors. Blood 2015; 125(6): 901-906.
180. Kim TD, Rea D, Schwarz M et al. Peripheral artery occlusive disease in chronic phase chronic myeloid leukemia patients treated with nilotinib or imatinib. Leukemia 2013; 27: 1316-1321.
181. Breccia M, Pregno P, Spallarossa P et al. Identification, prevention and management of cardiovascular risk in chronic myeloid leukaemia patients candidate to ponatinib: an expert opinion. Ann Hematol 2017; 96(4): 549-558.
182. Prandoni P. Venous and arterial thrombosis: Two aspects of the same disease? Clin Epidemiol 2009; 1: 1-6.
183. Cortes JE, Kim D.W., Pinilla-Ibarz J. et al. Long-term follow-up of ponatinib efficacy and safety in the phase 2 PACE trial [abstract]. Blood 2014; 124: 3135.
184. Lipton JH, Chuah C, Guerci-Bresler A et al. Epic: A Phase 3 Trial of Ponatinib Compared with Imatinib in Patients with Newly Diagnosed Chronic Myeloid Leukemia in Chronic Phase (CP-CML). Blood 2014; 124(21): 519.
185. Khorana AA, Carrier M, Garcia DA, Lee AY. Guidance for the prevention and treatment of cancer-associated venous thromboembolism. J Thromb Thrombolysis 2016; 41(1): 81-91.
186. Irvine E, Williams C. Treatment-, patient-, and disease-related factors and the emergence of adverse events with tyrosine kinase inhibitors for the treatment of chronic myeloid leukemia. Pharmacotherapy 2013; 33(8): 868-881.
187. Molica M, Scalzulli E, Colafigli G et al. Changes in estimated glomerular filtration rate in chronic myeloid leukemia patients treated frontline with available TKIs and correlation with cardiovascular events. Ann Hematol 2018; 97(10): 1803-1808.
188. Haguet H, Douxfils J, Mullier F et al. Risk of arterial and venous occlusive events in chronic myeloid leukemia patients treated with new generation BCR-ABL tyrosine kinase inhibitors: a systematic review and meta-analysis. Expert Opin Drug Saf 2017; 16(1): 5-12.
189. Caocci G, Mulas O, Annunziata M et al. Cardiovascular toxicity in patients with chronic myeloid leukemia treated with second-generation tyrosine kinase inhibitors in the real-life practice: Identification of risk factors and the role of prophylaxis. Am J Hematol 2018; 93(7): E159-E161.
190. Breccia M, Colafigli G, Molica M, Alimena G. Cardiovascular risk assesments in chronic myeloid leukemia allow identification of patients at high risk of cardiovascular events during treatment with nilotinib. Am J Hematol 2015; 90(5): E100-E101.
191. Perk J, De Backer G, Gohlke H et al. European guidelines on cardiovascular disease prevention in clinical practice (version 2012): The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by Representatives of Nine Societies and by Invited Experts). Int J Behav Med 2012; 19: 403-488.
192. Wilson PW, D’ Agostino RB, Levy D et al. Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97: 1837-1847.
193. Hippisley-Cox J, Coupl C, Vinogradova Y et al. Predicting cardiovascular risk in England and Wales: Prospective derivation and validation of Qrisk2. BMJ 2008; 336: 1475-1482.
194. Breccia M, Molica M, Zacheo I et al. Application of systematic coronary risk evaluation chart to identify chronic myeloid leukemia patients at risk of cardiovascular diseases during nilotinib treatment. Ann Hematol 2015; 94: 393-397.
195. Breccia M, Alimena G. Firstline treatment for chronic phase chronic myeloid leukemia patients should be based on a holistic approach. Expert Rev Hematol 2014; 28: 1-3.
196. Dorer DJ, Knickerbocker RK, Baccarani M et al. Impact of dose intensity of ponatinib on selected adverse events: multivariate analyses from a pooled population of clinical trial patients. Leuk Res 2016; 48: 84-91.
197. Cortes JE, Jean Khoury H, Kantarjian H et al. Long-term evaluation of cardiac and vascular toxicity in patients with Philadelphia chromosome-positive leukemias treated with bosutinib. Am J Hematol 2016; 91(6): 606-616.
198. Rosti G, Castagnetti F, Gugliotta G, Baccarani M. Tyrosine kinase inhibitors in chronic myeloid leukaemia: which, when, for whom? Nat Rev Clin Oncol 2017; 14(3): 141-154.
199. Isfort S, Brummendorf TH. Bosutinib in chronic myeloid leukemia: patient selection and perspectives. J Blood Med 2018; 9: 43-50.
200. Garcia-Gutierrez V, Martinez-Trillos A, Lopez Lorenzo JL et al. Bosutinib shows low cross intolerance, in chronic myeloid leukemia patients treated in fourth line. Results of the Spanish compassionate use program. Am J Hematol. 2015; 90(5): 429-433.