Exposure to selected environmental xenoestrogens and breast cancer – a review of recent studies Review article
Main Article Content
Abstract
Breast cancer is one of the most frequently diagnosed cancers in women worldwide and poses a significant
challenge to modern medicine and public health. The increase in the incidence of this type
of cancer is associated with various factors, including genetic, hormonal, lifestyle, and exposure to
harmful environmental substances. In recent years, particular attention has been paid to xenoestrogens
– synthetic chemical compounds present in the environment that mimic the action of natural
estrogens and can disrupt the human hormonal system. Xenoestrogens are found in many everyday
products, such as plastic packaging, cosmetics, detergents, and some pesticides. Scientists increasingly
indicate a possible link between their action and an increased risk of breast cancer development.
The mechanism of action of these substances is based on their ability to bind to estrogen receptors
in the body's cells, which may promote uncontrolled cell division and the development of cancerous
changes. This paper aims to present the mechanisms of action of selected environmental xenoestrogens,
their sources in the human environment, and discuss current research on their potential impact
on breast cancer risk.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright: © Medical Education sp. z o.o. This is an Open Access article distributed under the terms of the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). License (https://creativecommons.org/licenses/by-nc/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Address reprint requests to: Medical Education, Marcin Kuźma (marcin.kuzma@mededu.pl)
References
2. Xu H, Xu B. Breast cancer: Epidemiology, risk factors and screening. Chin J Cancer Res. 2023; 35(6): 565-83. http://doi.org/10.21147/j.issn.1000-9604.2023.06.02.
3. Rodgers KM, Udesky JO, Rudel RA et al. Environmental chemicals and breast cancer: An updated review of epidemiological literature informed by biological mechanisms. Environ Res. 2018; 160: 152-82. http://doi.org/10.1016/j.envres.2017.08.045.
4. Roger C, Paul A, Fort E et al. Changes in the European Union definition for endocrine disruptors: how many molecules remain a cause for concern? The example of crop protection products used in agriculture in France in the six last decades. Front Public Health. 2024; 11: 1343047. http://doi.org/10.3389/fpubh.2023.1343047.
5. Eve L, Fervers B, Le Romancer M et al. Exposure to Endocrine Disrupting Chemicals and Risk of Breast Cancer. Int J Mol Sci. 2020; 21(23): 9139. http://doi.org/10.3390/ijms21239139.
6. Gray JM, Rasanayagam S, Engel C et al. State of the evidence 2017: an update on the connection between breast cancer and the environment. Environ Health. 2017; 16(1): 94. http://doi.org/10.1186/s12940-017-0287-4.
7. Segovia-Mendoza M, Palacios-Arreola MI, Monroy-Escamilla LM et al. Association of Serum Levels of Plasticizers Compounds, Phthalates and Bisphenols, in Patients and Survivors of Breast Cancer: A Real Connection? Int J Environ Res Public Health. 2022; 19: 8040. https://doi.org/10.3390/ijerph19138040.
8. Darbre PD, Aljarrah A, Miller WR et al. Concentrations of parabens in human breast tumours. J Appl Toxicol. 2004; 24(1): 5-13. http://doi.org/10.1002/jat.958.
9. Hager E, Chen J, Zhao L. Minireview: Parabens Exposure and Breast Cancer. Int J Environ Res Public Health. 2022; 19(3): 1873. http://doi.org/10.3390/ijerph19031873.
10. Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol. 2019; 116: 135-70. http://doi.org/10.1016/bs.apcsb.2019.01.001.
11. Nair S, Sachdeva G. Estrogen matters in metastasis. Steroids. 2018; 138: 108-16. http://doi.org/10.1016/j.steroids.2018.07.006.
12. Starek-Świechowicz B, Budziszewska B, Starek A. Endogenous estrogens-breast cancer and chemoprevention. Pharmacol Rep. 2021; 73(6): 1497-512. http://doi.org/10.1007/s43440-021-00317-0.
13. Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer. N Engl J Med. 2006; 354(3): 270-82. http://doi.org/10.1056/NEJMra050776.
14. Wormsbaecher C, Hindman AR, Avendano A et al. In utero estrogenic endocrine disruption alters the stroma to increase extracellular matrix density and mammary gland stiffness. Breast Cancer Res. 2020; 22(1): 41. http://doi.org/10.1186/s13058-020-01275-w.
15. Warrier AV, Vg M, Neetha RL et al. Xenoestrogen and Its Interaction with Human Genes and Cellular Proteins: An In-Silico Study. Asian Pac J Cancer Prev. 2024; 25(6): 2077-87. http://doi.org/10.31557/APJCP.2024.25.6.2077.
16. Calaf GM, Ponce-Cusi R, Aguayo F et al. Endocrine disruptors from the environment affecting breast cancer. Oncol Lett. 2020; 20(1): 19-32. http://doi.org/10.3892/ol.2020.11566.
17. Vom Saal FS, Vandenberg LN. Update on the Health Effects of Bisphenol A: Overwhelming Evidence of Harm. Endocrinology. 2021; 162(3): bqaa171. http://doi.org/10.1210/endocr/bqaa171.
18. Hafezi SA, Abdel-Rahman WM. The Endocrine Disruptor Bisphenol A (BPA) Exerts a Wide Range of Effects in Carcinogenesis and Response to Therapy. Curr Mol Pharmacol. 2019; 12(3): 230-8. http://doi.org/10.2174/1874467212666190306164507.
19. Verga JU, Huff M, Owens D et al. Integrated Genomic and Bioinformatics Approaches to Identify Molecular Links between Endocrine Disruptors and Adverse Outcomes. Int J Environ Res Public Health. 2022; 19(1): 574. http://doi.org/10.3390/ijerph19010574.
20. Salamanca-Fernández E, Rodríguez-Barranco M, Amiano P et al. Bisphenol-A exposure and risk of breast and prostate cancer in the Spanish European Prospective Investigation into Cancer and Nutrition study. Environ Health. 2021; 20: 88. https://doi.org/10.1186/s12940-021-00779-y.
21. Wu AH, Franke AA, Wilkens LR et al. Risk of breast cancer and prediagnostic urinary excretion of bisphenol A, triclosan and parabens: The Multiethnic Cohort Study. Int J Cancer. 2021; 149(7): 1426-34. http://doi.org/10.1002/ijc.33692.
22. Schedin P, Keely PJ. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb Perspect Biol. 2011; 3(1): a003228. http://doi.org/10.1101/cshperspect.a003228.
23. Boyd NF, Li Q, Melnichouk O et al. Evidence that breast tissue stiffness is associated with risk of breast cancer. PLoS One. 2014; 9(7): e100937. http://doi.org/10.1371/journal.pone.0100937.
24. Xu S, Xu H, Wang W et al. The role of collagen in cancer: from bench to bedside. J Transl Med. 2019; 17(1): 309. http://doi.org/10.1186/s12967-019-2058-1.
25. Miziak P, Baran M, Błaszczak E et al. Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel). 2023; 15(19): 4689. http://doi.org/10.3390/cancers15194689.
26. Lin H, Liu S, Gao W et al. DDIT3 modulates cancer stemness in gastric cancer by directly regulating CEBPβ. J Pharm Pharmacol. 2020; 72(6): 807-15. http://doi.org/10.1111/jphp.13243.
27. Maharjan CK, Mo J, Wang L et al. Natural and Synthetic Estrogens in Chronic Inflammation and Breast Cancer. Cancers. 2022; 14: 206. https://doi.org/10.3390/cancers14010206.
28. Trabert B, Sherman ME, Kannan N et al. Progesterone and Breast Cancer. Endocr Rev. 2020; 41(2): 320-44. http://doi.org/10.1210/endrev/bnz001.
29. Ciążyńska M, Bednarski I, Lesiak A et al. Rola TGF-β w skórnej fotodestrukcji i kancerogenezie. Forum Dermatologicum. 2016; 2: 60-3.
30. Deng Z, Fan T, Xiao C et al. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther. 2024; 9(1): 61. http://doi.org/10.1038/s41392-024-01764-w .
31. Rocha PRS, Oliveira VD, Vasques CI et al. Exposure to endocrine disruptors and risk of breast cancer: A systematic review. Crit Rev Oncol Hematol. 2021; 161: 103330. http://doi.org/10.1016/j.critrevonc.2021.103330.
32. Sleightholm R, Neilsen BK, Elkhatib S et al. Percentage of Hormone Receptor Positivity in Breast Cancer Provides Prognostic Value: A Single-Institute Study. J Clin Med Res. 2021; 13(1): 9-19. http://doi.org/10.14740/jocmr4398.
33. Song W, Puttabyatappa M, Zeng L et al. Developmental programming: Prenatal bisphenol A treatment disrupts mediators of placental function in sheep. Chemosphere. 2020; 243: 125301. http://doi.org/10.1016/j.chemosphere.2019.125301.
34. Barr L, Metaxas G, Harbach CA et al. Measurement of paraben concentrations in human breast tissue at serial locations across the breast from axilla to sternum. J Appl Toxicol. 2012; 32(3): 219-32. http://doi.org/10.1002/jat.1786.
35. Vandenberg LN, Bugos J. Assessing the Public Health Implications of the Food Preservative Propylparaben: Has This Chemical Been Safely Used for Decades. Curr Environ Health Rep. 2021; 8(1): 54-70. http://doi.org/10.1007/s40572-020-00300-6.
36. Routledge EJ, Parker J, Odum J et al. Some alkyl hydroxy benzoate preservatives (parabens) are estrogenic. Toxicol Appl Pharmacol. 1998; 153(1): 12-9. http://doi.org/10.1006/taap.1998.8544.
37. Harvey PW, Darbre P. Endocrine disrupters and human health: could oestrogenic chemicals in body care cosmetics adversely affect breast cancer incidence in women? J Appl Toxicol. 2004; 24(3): 167-76. http://doi.org/10.1002/jat.978.
38. Sprague BL, Gangnon RE, Burt V et al. Prevalence of mammographically dense breasts in the United States. J Natl Cancer Inst. 2014; 106(10): dju255. http://doi.org/10.1093/jnci/dju255.
39. Sturesdotter L, Larsson AM, Zackrisson S et al. Investigating the prognostic value of mammographic breast density and mammographic tumor appearance in women with invasive breast cancer: The Malmö Diet and cancer study. Breast. 2023; 70: 8-17. http://doi.org/10.1016/j.breast.2023.05.004.
40. Parada H Jr, Gammon MD, Ettore HL et al. Urinary concentrations of environmental phenols and their associations with breast cancer incidence and mortality following breast cancer. Environ Int. 2019; 130: 104890. http://doi.org/10.1016/j.envint.2019.05.084.
41. Wróbel AM, Gregoraszczuk EŁ. Actions of methyl-, propyl- and butylparaben on estrogen receptor-α and -β and the progesterone receptor in MCF-7 cancer cells and non-cancerous MCF-10A cells. Toxicol Lett. 2014; 230(3): 375-81. http://doi.org/10.1016/j.toxlet.2014.08.012.
42. Tapia JL, McDonough JC, Cauble EL et al. Parabens Promote Protumorigenic Effects in Luminal Breast Cancer Cell Lines With Diverse Genetic Ancestry. J Endocr Soc. 2023; 7(8): bvad080. http://doi.org/10.1210/jendso/bvad080.
43. Gopalakrishnan K, Teitelbaum SL, Lambertini L et al. Changes in mammary histology and transcriptome profiles by low-dose exposure to environmental phenols at critical windows of development. Environ Res. 2017; 152: 233-43. http://doi.org/10.1016/j.envres.2016.10.021.
44. Pan S, Yuan C, Tagmount A et al. Parabens and Human Epidermal Growth Factor Receptor Ligand Cross-Talk in Breast Cancer Cells. Environ Health Perspect. 2016; 124(5): 563-9. http://doi.org/10.1289/ehp.1409200.
45. Mogus JP, LaPlante CD, Bansal R et al. Exposure to Propylparaben During Pregnancy and Lactation Induces Long-Term Alterations to the Mammary Gland in Mice. Endocrinology. 2021; 162(6): bqab041. http://doi.org/10.1210/endocr/bqab041.
46. Russo J, Russo IH. The role of estrogen in the initiation of breast cancer. J Steroid Biochem Mol Biol. 2006; 102(1-5): 89-96. http://doi.org/10.1016/j.jsbmb.2006.09.004.
47. Meier-Abt F, Milani E, Roloff T et al. Parity induces differentiation and reduces Wnt/Notch signaling ratio and proliferation potential of basal stem/progenitor cells isolated from mouse mammary epithelium. Breast Cancer Res. 2013; 15(2): R36. http://doi.org/10.1186/bcr3419.
48. Siwko SK, Dong J, Lewis MT et al. Evidence that an early pregnancy causes a persistent decrease in the number of functional mammary epithelial stem cells – implications for pregnancy-induced protection against breast cancer. Stem Cells. 2008; 26(12): 3205-9. http://doi.org/10.1634/stemcells.2008-0103.
49. Dall GV, Britt KL. Estrogen Effects on the Mammary Gland in Early and Late Life and Breast Cancer Risk. Front Oncol. 2017; 7: 110. http://doi.org/10.3389/fonc.2017.00110.
50. Barcellos-Hoff MH, Akhurst RJ. Transforming growth factor-beta in breast cancer: too much, too late. Breast Cancer Res. 2009; 11(1): 202. http://doi.org/10.1186/bcr2224.
51. Tong JH, Elmore S, Huang SS et al. Chronic Exposure to Low Levels of Parabens Increases Mammary Cancer Growth and Metastasis in Mice. Endocrinology. 2023; 164(3): bqad007. http://doi.org/10.1210/endocr/bqad007.
52. Final amended report on the safety assessment of Methylparaben, Ethylparaben, Propylparaben, Isopropylparaben, Butylparaben, Isobutylparaben, and Benzylparaben as used in cosmetic products. Int J Toxicol. 2008; 27(Suppl 4): 1-82. http://doi.org/10.1080/10915810802548359.
53. Matouskova K, Szabo GK, Daum J et al. Best practices to quantify the impact of reproductive toxicants on development, function, and diseases of the rodent mammary gland. Reprod Toxicol. 2022; 112: 51-67. http://doi.org/10.1016/j.reprotox.2022.06.011.
54. Fish L, Khoroshkin M, Navickas A et al. A prometastatic splicing program regulated by SNRPA1 interactions with structured RNA elements. Science. 2021; 372(6543): eabc7531. http://doi.org/10.1126/science.abc7531.
55. Rusidzé M, Adlanmérini M, Chantalat E et al. Estrogen receptor-α signaling in post-natal mammary development and breast cancers. Cell Mol Life Sci. 2021; 78(15): 5681-705. http://doi.org/10.1007/s00018-021-03860-4.
56. Basso CG, de Araújo-Ramos AT, Martino-Andrade AJ. Exposure to phthalates and female reproductive health: A literature review. Reprod Toxicol. 2022; 109: 61-79. http://doi.org/10.1016/j.reprotox.2022.02.006.
57. Yang L, Liu X, Peng Z et al. Exposure to di-2-ethylhexyl phthalate (DEHP) increases the risk of cancer. BMC Public Health. 2024; 24(1): 430. http://doi.org/10.1186/s12889-024-17801-w.
58. Crobeddu B, Ferraris E, Kolasa E et al. Di(2-ethylhexyl) phthalate (DEHP) increases proliferation of epithelial breast cancer cells through progesterone receptor dysregulation. Environ Res. 2019; 173: 165-73. http://doi.org/10.1016/j.envres.2019.03.037.
59. Liu G, Cai W, Liu H et al. The Association of Bisphenol A and Phthalates with Risk of Breast Cancer: A Meta-Analysis. Int J Environ Res Public Health. 2021; 18(5): 2375. http://doi.org/10.3390/ijerph18052375.
60. Ahern TP, Broe A, Lash TL et al. Phthalate Exposure and Breast Cancer Incidence: A Danish Nationwide Cohort Study. J Clin Oncol. 2019; 37(21): 1800-9. http://doi.org/10.1200/JCO.18.02202.
61. Fiocchetti M, Bastari G, Cipolletti M et al. The Peculiar Estrogenicity of Diethyl Phthalate: Modulation of Estrogen Receptor α Activities in the Proliferation of Breast Cancer Cells. Toxics. 2021; 9(10): 237. http://doi.org/10.3390/toxics9100237.
62. Chen FP, Chien MH, Chern IY. Impact of low concentrations of phthalates on the effects of 17β-estradiol in MCF-7 breast cancer cells. Taiwan J Obstet Gynecol. 2016; 55(6): 826-34. http://doi.org/10.1016/j.tjog.2015.11.003.