Advances in immunotherapy for osteosarcoma: a review of emerging treatment strategies Review article

Main Article Content

Kamil Poboży
Paweł Domański
Julia Domańska
Wojciech Konarski
Tomasz Poboży

Abstract

Advances in immunotherapy for osteosarcoma have shown promising results, with the use of monoclonal antibodies and immune checkpoint inhibitors. These strategies are aimed at targeting specific molecules and pathways involved in tumour immune evasion and promoting anti-tumour immune responses. Other emerging immunotherapeutic approaches include autophagy and pyroptosis induction, chimeric antigen receptor T-cell therapy, gadolinium-bisphosphonate nanoparticles and dendritic cell-based vaccines. Continued research into these emerging treatment strategies is essential for developing effective therapies for patients with high-grade osteosarcoma.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
1.
Poboży K, Domański P, Domańska J, Konarski W, Poboży T. Advances in immunotherapy for osteosarcoma: a review of emerging treatment strategies. OncoReview [Internet]. 2023Sep.13 [cited 2024Nov.21];13(3(51):75-4. Available from: https://journalsmededu.pl/index.php/OncoReview/article/view/2818
Section
PERSONALIZED ONCOLOGY

References

1. Simpson E, Brown HL. Understanding osteosarcomas. JAAPA. 2018; 31(8): 15-9. http://doi.org/10.1097/01.JAA.0000541477.24116.8d .
2. Luetke A, Meyers PA, Lewis I et al. Osteosarcoma treatment - where do we stand? A state of the art review. Cancer Treat Rev. 2014; 40(4): 523-32. http://doi.org/10.1016/j.ctrv.2013.11.006.
3. Picci P. Osteosarcoma (osteogenic sarcoma). Orphanet J Rare Dis. 2007; 2: 6. http://doi.org/10.1186/1750-1172-2-6.
4. Cole S, Gianferante DM, Zhu B et al. Osteosarcoma: A Surveillance, Epidemiology, and End Results program-based analysis from 1975 to 2017. Cancer. 2022; 128(11): 2107-18. http://doi.org/10.1002/cncr.34163.
5. Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat Res. 2009; 152: 3-13. http://doi.org/10.1007/978-1-4419-0284-9_1.
6. Sissons HA. The WHO classification of bone tumors. Recent Results Cancer Res. 1976; (54): 104-8. http://doi.org/10.1007/978-3-642-80997-2_8.
7. Ferlay J, Soerjomataram I, Dikshit R et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015; 136(5): E359-86. http://doi.org/10.1002/ijc.29210.
8. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer. 2009; 115(7): 1531-43. http://doi.org/10.1002/cncr.24121.
9. Czarnecka AM, Synoradzki K, Firlej W et al. Molecular Biology of Osteosarcoma. Cancers (Basel). 2020; 12(8): 2130. http://doi.org/10.3390/cancers12082130.
10. Fiedorowicz M, Bartnik E, Sobczuk P et al. Molecular biology of sarcoma. Oncol Clin Pr. 2018; 14: 307-30. http://doi.org/10.5603/OCP.2018.0045.
11. Rickel K, Fang F, Tao J. Molecular genetics of osteosarcoma. Bone. 2017; 102: 69-79. http://doi.org/10.1016/j.bone.2016.10.017.
12. Shao Z, He Y, Wang L et al. Computed tomography findings in radiation-induced osteosarcoma of the jaws. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010; 109(3): e88-94. http://doi.org/10.1016/j.tripleo.2009.10.049.
13. Shvedov VL. Skhematicheskaia model’ osteosarkomogeneza, indutsirovannogo 90Sr [Schematic model of genesis of osteosarcoma induced by Sr-90]. Radiats Biol Radioecol. 1996; 36(1): 109-18.
14. Rani AS, Kumar S. Transformation of non-tumorigenic osteoblast-like human osteosarcoma cells by hexavalent chromates: alteration of morphology, induction of anchorage-independence and proteolytic function. Carcinogenesis. 1992; 13(11): 2021-7. http://doi.org/10.1093/carcin/13.11.2021.
15. Dutra FR, Largent EJ. Osteosarcoma induced by beryllium oxide. Am J Pathol. 1950; 26(2): 197-209.
16. Mazabraud A. Production expérimentale de sarcomes osseux chez le lapin par injection unique locale de Béryllium [Experimental production of bone sarcomas in the rabbit by a single local injection of beryllium]. Bull Cancer. 1975; 62(1): 49-58.
17. Comber H, Deady S, Montgomery E et al. Drinking water fluoridation and osteosarcoma incidence on the island of Ireland. Cancer Causes Control. 2011; 22(6): 919-24. http://doi.org/10.1007/s10552-011-9765-0.
18. Miller BJ, Cram P, Lynch CF et al. Risk factors for metastatic disease at presentation with osteosarcoma: an analysis of the SEER database. J Bone Joint Surg Am. 2013; 95(13): e89. http://doi.org/10.2106/JBJS.L.01189.
19. McDonald J, DenOtter TD. Codman Triangle. In: StatPearls. Treasure Island (FL): StatPearls Publishing; July 30, 2022.
20. Panicek DM, Gatsonis C, Rosenthal DI et al. CT and MR imaging in the local staging of primary malignant musculoskeletal neoplasms: Report of the Radiology Diagnostic Oncology Group. Radiology. 1997; 202(1): 237-46. http://doi.org/10.1148/radiology.202.1.8988217.
21. Kundu ZS. Classification, imaging, biopsy and staging of osteosarcoma. Indian J Orthop. 2014; 48(3): 238-46. http://doi.org/10.4103/0019-5413.132491.
22. Sajadi KR, Heck RK, Neel MD et al. The incidence and prognosis of osteosarcoma skip metastases. Clin Orthop Relat Res. 2004; 426: 92-6. http://doi.org/10.1097/01.blo.0000141493.52166.69.
23. Sbaraglia M, Bellan E, Dei Tos AP. The 2020 WHO Classification of Soft Tissue Tumours: news and perspectives. Pathologica. 2021; 113(2): 70-84. http://doi.org/10.32074/1591-951X-213.
24. Ritter J, Bielack SS. Osteosarcoma. Ann Oncol. 2010; 21(Suppl 7): vii320-5. http://doi.org/10.1093/annonc/mdq276.
25. Jaffe N, Carrasco H, Raymond K et al. Can cure in patients with osteosarcoma be achieved exclusively with chemotherapy and abrogation of surgery? Cancer. 2002; 95(10): 2202-10. http://doi.org/10.1002/cncr.10944.
26. Peabody TD, Gibbs CP Jr, Simon MA. Evaluation and staging of musculoskeletal neoplasms. J Bone Joint Surg Am. 1998; 80(8): 1204-18. http://doi.org/10.2106/00004623-199808000-00016.
27. Bacci G, Forni C, Longhi A et al. Local recurrence and local control of non-metastatic osteosarcoma of the extremities: a 27-year experience in a single institution. J Surg Oncol. 2007; 96(2): 118-23. http://doi.org/10.1002/jso.20628.
28. Wittig JC, Bickels J, Kellar-Graney KL et al. Osteosarcoma of the proximal humerus: long-term results with limb-sparing surgery. Clin Orthop Relat Res. 2002; 397: 156-76. http://doi.org/10.1097/00003086-200204000-00021.
29. Renard AJ, Veth RP, Schreuder HW et al. Function and complications after ablative and limb-salvage therapy in lower extremity sarcoma of bone. J Surg Oncol. 2000; 73(4): 198-205. http://doi.org/10.1002/(sici)1096-9098(200004)73:4<198::aid-jso3>3.0.co;2-x.
30. Nagarajan R, Neglia JP, Clohisy DR et al. Education, employment, insurance, and marital status among 694 survivors of pediatric lower extremity bone tumors: a report from the childhood cancer survivor study. Cancer. 2003; 97(10): 2554-64. http://doi.org/10.1002/cncr.11363.
31. Wong KC, Niu X, Xu H et al. Computer Navigation in Orthopaedic Tumour Surgery. Adv Exp Med Biol. 2018; 1093: 315-26. http://doi.org/10.1007/978-981-13-1396-7_24.
32. Rosen G, Marcove RC, Huvos AG et al. Primary osteogenic sarcoma: eight-year experience with adjuvant chemotherapy. J Cancer Res Clin Oncol. 1983; 106 Suppl: 55-67. http://doi.org/10.1007/BF00625054.
33. Ferguson WS, Goorin AM. Current treatment of osteosarcoma. Cancer Invest. 2001; 19(3): 292-315. http://doi.org/10.1081/cnv-100102557.
34. Stea B, Cavazzana A, Kinsella TJ. Small-cell osteosarcoma: correlation of in vitro and clinical radiation response. Int J Radiat Oncol Biol Phys. 1988; 15(5): 1233-8. http://doi.org/10.1016/0360-3016(88)90209-x.
35. Age and dose of chemotherapy as major prognostic factors in a trial of adjuvant therapy of osteosarcoma combining two alternating drug combinations and early prophylactic lung irradiation. French Bone Tumor Study Group. Cancer. 1988; 61(7): 1304-11. http://doi.org/10.1002/1097-0142(19880401)61:7<1304::aid-cncr2820610705>3.0.co;2-i.
36. Zaharia M, Caceres E, Valdivia S et al. Postoperative whole lung irradiation with or without adriamycin in osteogenic sarcoma. Int J Radiat Oncol Biol Phys. 1986; 12(6): 907-10. http://doi.org/10.1016/0360-3016(86)90384-6.
37. Whelan JS, Burcombe RJ, Janinis J et al. A systematic review of the role of pulmonary irradiation in the management of primary bone tumours. Ann Oncol. 2002; 13(1): 23-30. http://doi.org/10.1093/annonc/mdf047.
38. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5): 646-74. http://doi.org/10.1016/j.cell.2011.02.013.
39. Lei Q, Wang D, Sun K et al. Resistance Mechanisms of Anti-PD1/PDL1 Therapy in Solid Tumors. Front Cell Dev Biol. 2020; 8: 672. http://doi.org/10.3389/fcell.2020.00672.
40. Vinay DS, Ryan EP, Pawelec G et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015; 35 Suppl: S185-98. http://doi.org/10.1016/j.semcancer.2015.03.004.
41. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer. 2019; 19(3): 133-50. http://doi.org/10.1038/s41568-019-0116-x .
42. Li B, Chan HL, Chen P. Immune Checkpoint Inhibitors: Basics and Challenges. Curr Med Chem. 2019; 26(17): 3009-25. http://doi.org/10.2174/0929867324666170804143706.
43. Francisco LM, Salinas VH, Brown KE et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 2009; 206(13): 3015-29. http://doi.org/10.1084/jem.20090847.
44. Arasanz H, Gato-Cañas M, Zuazo M et al. PD1 signal transduction pathways in T cells. Oncotarget. 2017; 8(31): 51936-45. http://doi.org/10.18632/oncotarget.17232.
45. Amarnath S, Mangus CW, Wang JC et al. The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci Transl Med. 2011; 3(111): 111ra120. http://doi.org/10.1126/scitranslmed.3003130.
46. Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018; 18(3): 153-67. http://doi.org/10.1038/nri.2017.108.
47. Wen Y, Tang F, Tu C et al. Immune checkpoints in osteosarcoma: Recent advances and therapeutic potential. Cancer Lett. 2022; 547: 215887. http://doi.org/10.1016/j.canlet.2022.215887.
48. Bhatia A, Kumar Y. Cellular and molecular mechanisms in cancer immune escape: a comprehensive review. Expert Rev Clin Immunol. 2014; 10(1): 41-62. http://doi.org/10.1586/1744666X.2014.865519.
49. Goel G, Sun W. Cancer immunotherapy in clinical practice – the past, present, and future. Chin J Cancer. 2014; 33(9): 445-57. http://doi.org/10.5732/cjc.014.10123.
50. Kandel S, Adhikary P, Li G et al. The TIM3/Gal9 signaling pathway: An emerging target for cancer immunotherapy. Cancer Lett. 2021; 510: 67-78. http://doi.org/10.1016/j.canlet.2021.04.011.
51. Cheong JE, Sun L. Targeting the IDO1/TDO2-KYN-AhR Pathway for Cancer Immunotherapy Challenges and Opportunities. Trends Pharmacol Sci. 2018; 39(3): 307-25. http://doi.org/10.1016/j.tips.2017.11.007.
52. Shi AP, Tang XY, Xiong YL et al. Immune Checkpoint LAG3 and Its Ligand FGL1 in Cancer. Front Immunol. 2022; 12: 785091. http://doi.org/10.3389/fimmu.2021.785091.
53. Twomey JD, Zhang B. Cancer Immunotherapy Update: FDA-Approved Checkpoint Inhibitors and Companion Diagnostics. AAPS J. 2021; 23(2): 39. http://doi.org/10.1208/s12248-021-00574-0.
54. Hughes T, Klairmont M, Sharfman WH et al. Interleukin-2, Ipilimumab, and Anti-PD-1: clinical management and the evolving role of immunotherapy for the treatment of patients with metastatic melanoma. Cancer Biol Ther. 2021; 22(10-12): 513-26. http://doi.org/10.1080/15384047.2015.1095401.
55. Carlino MS, Menzies AM, Atkinson V et al. Long-term Follow-up of Standard-Dose Pembrolizumab Plus Reduced-Dose Ipilimumab in Patients with Advanced Melanoma: KEYNOTE-029 Part 1B. Clin Cancer Res. 2020; 26(19): 5086-91. http://doi.org/10.1158/1078-0432.CCR-20-0177.
56. Lebbé C, Meyer N, Mortier L et al. Evaluation of Two Dosing Regimens for Nivolumab in Combination With Ipilimumab in Patients With Advanced Melanoma: Results From the Phase IIIb/IV CheckMate 511 Trial. J Clin Oncol. 2019; 37(11): 867-75. http://doi.org/10.1200/JCO.18.01998.
57. Tawbi HA, Forsyth PA, Algazi A et al. Combined Nivolumab and Ipilimumab in Melanoma Metastatic to the Brain. N Engl J Med. 2018; 379(8): 722-30. http://doi.org/10.1056/NEJMoa1805453.
58. Robert C, Thomas L, Bondarenko I et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011; 364(26): 2517-2526. http://doi.org/10.1056/NEJMoa1104621.
59. Hodi FS, O’Day SJ, McDermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010; 363(8): 711-23. http://doi.org/10.1056/NEJMoa1003466. [correction in: N Engl J Med. 2010; 363(13): 1290].
60. Paoluzzi L, Cacavio A, Ghesani M et al. Response to anti-PD1 therapy with nivolumab in metastatic sarcomas. Clin Sarcoma Res. 2016; 6: 24. http://doi.org/10.1186/s13569-016-0064-0.
61. Davis KL, Fox E, Merchant MS et al. Nivolumab in children and young adults with relapsed or refractory solid tumours or lymphoma (ADVL1412): a multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol. 2020; 21(4): 541-50. http://doi.org/10.1016/S1470-2045(20)30023-1.
62. Tawbi HA, Burgess M, Bolejack V et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single- arm, open-label, phase 2 trial. Lancet Oncol. 2017; 18(11): 1493-501. http://doi.org/10.1016/S1470-2045(17)30624-1. [correction in: Lancet Oncol. 2017; 18(12): e711, Lancet Oncol. 2018; 19(1): e8].
63. Boye K, Longhi A, Guren T et al. Pembrolizumab in advanced osteosarcoma: results of a single-arm, open-label, phase 2 trial. Cancer Immunol Immunother. 2021; 70(9): 2617-24. http://doi.org/10.1007/s00262-021-02876-w.
64. Geoerger B, Zwaan CM, Marshall LV et al. Atezolizumab for children and young adults with previously treated solid tumours, non-Hodgkin lymphoma, and Hodgkin lymphoma (iMATRIX): a multicentre phase 1-2 study. Lancet Oncol. 2020; 21(1): 134-44. http://doi.org/10.1016/S1470-2045(19)30693-X.
65. Merchant MS, Wright M, Baird K et al. Phase I Clinical Trial of Ipilimumab in Pediatric Patients with Advanced Solid Tumors. Clin Cancer Res. 2016; 22(6): 1364-70. http://doi.org/10.1158/1078-0432.CCR-15-0491.
66. Nuytemans L, Sys G, Creytens D et al. NGS-analysis to the rescue: dual checkpoint inhibition in metastatic osteosarcoma – a case report and review of the literature. Acta Clin Belg. 2021; 76(2): 162-7. http://doi.org/10.1080/17843286.2019.1683129.
67. Daud AI, Wolchok JD, Robert C et al. Programmed Death-Ligand 1 Expression and Response to the Anti-Programmed Death 1 Antibody Pembrolizumab in Melanoma. J Clin Oncol. 2016; 34(34): 4102-9. http://doi.org/10.1200/JCO.2016.67.2477.
68. Ott PA, Bang YJ, Piha-Paul SA et al. T-Cell-Inflamed Gene-Expression Profile, Programmed Death Ligand 1 Expression, and Tumor Mutational Burden Predict Efficacy in Patients Treated With Pembrolizumab Across 20 Cancers: KEYNOTE-028. J Clin Oncol. 2019; 37(4): 318-27. http://doi.org/10.1200/JCO.2018.78.2276.
69. Garon EB, Rizvi NA, Hui R et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015; 372(21): 2018-28. http://doi.org/10.1056/NEJMoa1501824.
70. Wu CC, Livingston JA. Genomics and the Immune Landscape of Osteosarcoma. Adv Exp Med Biol. 2020; 1258: 21-36. http://doi.org/10.1007/978-3-030-43085-6_2.
71. Young K, Hughes DJ, Cunningham D et al. Immunotherapy and pancreatic cancer: unique challenges and potential opportunities. Ther Adv Med Oncol. 2018; 10: 1758835918816281. http://doi.org/10.1177/1758835918816281.
72. Zhou Y, Yang D, Yang Q et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat Commun. 2020; 11(1): 6322. http://doi.org/10.1038/s41467-020-20059-6. (correction in: Nat Commun. 2021; 12(1): 2567).
73. Chen Z, Li L, Li Z et al. Identification of key serum biomarkers for the diagnosis and metastatic prediction of osteosarcoma by analysis of immune cell infiltration. Cancer Cell Int. 2022; 22(1): 78. http://doi.org/10.1186/s12935-022-02500-6.
74. Ligon JA, Choi W, Cojocaru G et al. Pathways of immune exclusion in metastatic osteosarcoma are associated with inferior patient outcomes. J Immunother Cancer. 2021; 9(5): e001772. http://doi.org/10.1136/jitc-2020-001772.
75. Bagchi S, Yuan R, Engleman EG. Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annu Rev Pathol. 2021; 16: 223-49. http://doi.org/10.1146/annurev-pathol-042020-042741.
76. Wu CC, Beird HC, Livingston AJ et al. Immuno-genomic landscape of osteosarcoma. Nat Commun. 2020; 11(1): 1008. http://doi.org/10.1038/s41467-020-14646-w .
77. Cui J, Dean D, Hornicek FJ et al. The role of extracelluar matrix in osteosarcoma progression and metastasis. J Exp Clin Cancer Res. 2020; 39(1): 178. http://doi.org/10.1186/s13046-020-01685-w .
78. Fernández-Tabanera E, Melero-Fernández de Mera RM, Alonso J. CD44 in Sarcomas: A Comprehensive Review and Future Perspectives. Front Oncol. 2022; 12: 909450. http://doi.org/10.3389/fonc.2022.909450.
79. Simon T, Li L, Wagner C et al. Differential Regulation of T-cell Immunity and Tolerance by Stromal Laminin Expressed in the Lymph Node. Transplantation. 2019; 103(10): 2075-89. http://doi.org/10.1097/TP.0000000000002774.
80. Li L, Wei JR, Dong J et al. Laminin γ2-mediating T cell exclusion attenuates response to anti-PD-1 therapy. Sci Adv. 2021; 7(6): eabc8346. http://doi.org/10.1126/sciadv.abc8346.
81. Paavola KJ, Roda JM, Lin VY et al. The Fibronectin-ILT3 Interaction Functions as a Stromal Checkpoint that Suppresses Myeloid Cells. Cancer Immunol Res. 2021; 9(11): 1283-97. http://doi.org/10.1158/2326-6066.CIR-21-0240.
82. Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015; 348(6230): 74-80. http://doi.org/10.1126/science.aaa6204.
83. Xu S, Xu H, Wang W et al. The role of collagen in cancer: from bench to bedside. J Transl Med. 2019; 17(1): 309. http://doi.org/10.1186/s12967-019-2058-1.
84. Nissen NI, Karsdal M, Willumsen N. Collagens and Cancer associated fibroblasts in the reactive stroma and its relation to Cancer biology. J Exp Clin Cancer Res. 2019; 38(1): 115. http://doi.org/10.1186/s13046-019-1110-6.
85. Kuczek DE, Larsen AMH, Thorseth ML et al. Collagen density regulates the activity of tumor-infiltrating T cells. J Immunother Cancer. 2019; 7(1): 68. http://doi.org/10.1186/s40425-019-0556-6.
86. Peng DH, Rodriguez BL, Diao L et al. Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8+ T cell exhaustion. Nat Commun. 2020; 11(1): 4520. http://doi.org/10.1038/s41467-020-18298-8 .
87. Chakravarthy A, Khan L, Bensler NP et al. TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat Commun. 2018; 9(1): 4692. http://doi.org/10.1038/s41467-018-06654-8.
88. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010; 221(1): 3-12. http://doi.org/10.1002/path.2697.
89. Ge YX, Zhang TW, Zhou L et al. Enhancement of anti-PD-1/PD-L1 immunotherapy for osteosarcoma using an intelligent autophagy-controlling metal organic framework. Biomaterials. 2022; 282: 121407. http://doi.org/10.1016/j.biomaterials.2022.121407.
90. Limpert AS, Lambert LJ, Bakas NA et al. Autophagy in Cancer: Regulation by Small Molecules. Trends Pharmacol Sci. 2018; 39(12): 1021-32. http://doi.org/10.1016/j.tips.2018.10.004.
91. Jiang GM, Tan Y, Wang H et al. The relationship between autophagy and the immune system and its applications for tumor immunotherapy. Mol Cancer. 2019; 18(1): 17. http://doi.org/10.1186/s12943-019-094-z.
92. Michaud M, Martins I, Sukkurwala AQ et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 2011; 334(6062): 1573-7. http://doi.org/10.1126/science.1208347.
93. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011; 469(7330): 323-5. http://doi.org/10.1038/nature09782.
94. Deretic V, Levine B. Autophagy balances inflammation in innate immunity. Autophagy. 2018; 14(2): 243-51. http://doi.org/10.1080/15548627.2017.1402992.
95. White E, Mehnert JM, Chan CS. Autophagy, Metabolism, and Cancer. Clin Cancer Res. 2015; 21(22): 5037-46. http://doi.org/10.1158/1078-0432.CCR-15-0490.
96. Ge Y, Zhou S, Li Y et al. Estrogen prevents articular cartilage destruction in a mouse model of AMPK deficiency via ERK-mTOR pathway. Ann Transl Med. 2019; 7(14): 336. http://doi.org/10.21037/atm.2019.06.77.
97. Hahn T, Akporiaye ET. α-TEA as a stimulator of tumor autophagy and enhancer of antigen cross presentation. Autophagy. 2013; 9(3): 429-31. http://doi.org/10.4161/auto.22969.
98. Li Y, Hahn T, Garrison K et al. The vitamin E analogue α-TEA stimulates tumor autophagy and enhances antigen cross-presentation. Cancer Res. 2012; 72(14): 3535-45. http://doi.org/10.1158/0008-5472.CAN-11-3103.
99. Fang Y, Tian S, Pan Y et al. Pyroptosis: A new frontier in cancer. Biomed Pharmacother. 2020; 121: 109595. http://doi.org/10.1016/j.biopha.2019.109595.
100. Wu M, Wang Y, Yang D et al. A PLK1 kinase inhibitor enhances the chemosensitivity of cisplatin by inducing pyroptosis in oesophageal squamous cell carcinoma. EBioMedicine. 2019; 41: 244-55. http://doi.org/10.1016/j.ebiom.2019.02.012. Erratum in: EBioMedicine. 2019; 43: 650. Erratum in: EBioMedicine. 2021; 63: 103041.
101. Wang WJ, Chen D, Jiang MZ et al. Downregulation of gasdermin D promotes gastric cancer proliferation by regulating cell cycle-related proteins. J Dig Dis. 2018; 19(2): 74-83. http://doi.org/10.1111/1751-2980.12576.
102. Wang Y, Gao W, Shi X et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 2017; 547(7661): 99-103. http://doi.org/10.1038/nature22393.
103. Wang Y, Yin B, Li D et al. GSDME mediates caspase-3-dependent pyroptosis in gastric cancer. Biochem Biophys Res Commun. 2018; 495(1): 1418-25. http://doi.org/10.1016/j.bbrc.2017.11.156.
104. Jin J, Yuan P, Yu W et al. Mitochondria-Targeting Polymer Micelle of Dichloroacetate Induced Pyroptosis to Enhance Osteosarcoma Immunotherapy. ACS Nano. 2022; 16(7): 10327-40. http://doi.org/10.1021/acsnano.2c00192.
105. June CH, O’Connor RS, Kawalekar OU et al. CAR T cell immunotherapy for human cancer. Science. 2018; 359(6382): 1361-5. http://doi.org/10.1126/science.aar6711.
106. Bonini C, Mondino A. Adoptive T-cell therapy for cancer: The era of engineered T cells. Eur J Immunol. 2015; 45(9): 2457-69. http://doi.org/10.1002/eji.201545552.
107. Ma S, Li X, Wang X et al. Current Progress in CAR-T Cell Therapy for Solid Tumors. Int J Biol Sci. 2019; 15(12): 2548-60. http://doi.org/10.7150/ijbs.34213.
108. Wang Y, Yu W, Zhu J et al. Anti-CD166/4-1BB chimeric antigen receptor T cell therapy for the treatment of osteosarcoma. J Exp Clin Cancer Res. 2019; 38(1): 168. http://doi.org/10.1186/s13046-019-1147-6.
109. Jafari F, Javdansirat S, Sanaie S et al. Osteosarcoma: A comprehensive review of management and treatment strategies. Ann Diagn Pathol. 2020; 49: 151654. http://doi.org/10.1016/j.anndiagpath.2020.151654.
110. Dillman RO, Cornforth AN, McClay EF et al. Patient-specific dendritic cell vaccines with autologous tumor antigens in 72 patients with metastatic melanoma. Melanoma Manag. 2019; 6(2): MMT20. http://doi.org/10.2217/mmt-2018-0010.
111. Supra R, Agrawal DK. Immunotherapeutic Strategies in the Management of Osteosarcoma. J Orthop Sports Med. 2023; 5(1): 32-40. http://doi.org/10.26502/josm.511500076.
112. Harari A, Graciotti M, Bassani-Sternberg M et al. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat Rev Drug Discov. 2020; 19(9): 635-52. http://doi.org/10.1038/s41573-020-0074-8.
113. Yu Z, Ma B, Zhou Y et al. Allogeneic tumor vaccine produced by electrofusion between osteosarcoma cell line and dendritic cells in the induction of antitumor immunity. Cancer Invest. 2007; 25(7): 535-41. http://doi.org/10.1080/07357900701508918.
114. Tsai YF, Huang CW, Chiang JH et al. Gadolinium chloride elicits apoptosis in human osteosarcoma U-2 OS cells through extrinsic signaling, intrinsic pathway and endoplasmic reticulum stress. Oncol Rep. 2016; 36(6): 3421-6. http://doi.org/10.3892/or.2016.5174.
115. Zhang S, Wu Y, Yu J et al. Gadolinium-Bisphosphonate Nanoparticle-Based Low-Dose Radioimmunotherapy for Osteosarcoma. ACS Biomater Sci Eng. 2022; 8(12): 5329-37. http://doi.org/10.1021/acsbiomaterials.2c00880.
116. Jaiswal S, Jamieson CH, Pang WW et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009; 138(2): 271-85. http://doi.org/10.1016/j.cell.2009.05.046.
117. Theruvath J, Menard M, Smith BAH et al. Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nat Med. 2022; 28(2): 333-44. http://doi.org/10.1038/s41591-021-01625-x .
118. Sikic BI, Lakhani N, Patnaik A et al. First-in-Human, First-in-Class Phase I Trial of the Anti-CD47 Antibody Hu5F9-G4 in Patients With Advanced Cancers. J Clin Oncol. 2019; 37(12): 946-53. http://doi.org/10.1200/JCO.18.02018.
119. Advani R, Flinn I, Popplewell L et al. CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin’s Lymphoma. N Engl J Med. 2018; 379(18): 1711-21. http://doi.org/10.1056/NEJMoa1807315.
120. Long AH, Highfill SL, Cui Y et al. Reduction of MDSCs with All-trans Retinoic Acid Improves CAR Therapy Efficacy for Sarcomas. Cancer Immunol Res. 2016; 4(10): 869-80. http://doi.org/10.1158/2326-6066.CIR-15-0230.
121. Dobrenkov K, Ostrovnaya I, Gu J et al. Oncotargets GD2 and GD3 are highly expressed in sarcomas of children, adolescents, and young adults. Pediatr Blood Cancer. 2016; 63(10): 1780-5. http://doi.org/10.1002/pbc.26097.
122. Schulz G, Cheresh DA, Varki NM et al. Detection of ganglioside GD2 in tumor tissues and sera of neuroblastoma patients. Cancer Res. 1984; 44(12 Pt 1): 5914-20.
123. Mount CW, Majzner RG, Sundaresh S et al. Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Nat Med. 2018; 24(5): 572-9. http://doi.org/10.1038/s41591-018-0006-x .
124. Battula VL, Shi Y, Evans KW et al. Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Invest. 2012; 122(6): 2066-78. http://doi.org/10.1172/JCI59735.
125. Cheresh DA, Rosenberg J, Mujoo K et al. Biosynthesis and expression of the disialoganglioside GD2, a relevant target antigen on small cell lung carcinoma for monoclonal antibody-mediated cytolysis. Cancer Res. 1986; 46(10): 5112-8.
126. Hingorani P, Krailo M, Buxton A et al. Phase 2 study of anti-disialoganglioside antibody, dinutuximab, in combination with GM-CSF in patients with recurrent osteosarcoma: A report from the Children’s Oncology Group. Eur J Cancer. 2022; 172: 264-75. http://doi.org/10.1016/j.ejca.2022.05.035.
127. Grant SC, Kostakoglu L, Kris MG et al. Targeting of small-cell lung cancer using the anti-GD2 ganglioside monoclonal antibody 3F8: a pilot trial. Eur J Nucl Med. 1996; 23(2): 145-9. http://doi.org/10.1007/BF01731837.
128. Anti-GD2 and Anti-CD47 Are Synergistic and Promote Tumor Eradication. Cancer Discov. 2022; 12(3): OF8. http://doi.org/10.1158/2159-8290.CD-RW2022-011.

Most read articles by the same author(s)