Concentration of pollen of Chenopodiaceae/Amaranthaceae plants in the air of selected Polish cities in 2020 Original article

##plugins.themes.bootstrap3.article.main##

Krystyna Piotrowska-Weryszko
Elżbieta Weryszko-Chmielewska
Aneta Sulborska
Małgorzata Puc
Małgorzata Malkiewicz
Zenon Siergiejko
Katarzyna Dąbrowska-Zapart
Monika Ziemianin
Anna Rapiejko
Andrzej Wieczorkiewicz
Dariusz Jurkiewicz
Ewa Kalinowska
Agnieszka Lipiec

Abstrakt

Various concentrations of Chenopodiaceae/Amaranthaceae pollen are detected in the air of many regions of Europe. The highest content of pollen produced by the taxon is reported in southern Europe and in other countries with a warm climate and low precipitation sums. The study was focused on characterization of the Chenopodiaceae/Amaranthaceae pollen season in 11 Polish cities: Bialystok, Bydgoszcz, Cracow, Lublin, Olsztyn, Piotrkow Trybunalski, Sosnowiec, Szczecin, Warsaw, Wroclaw, and Zielona Gora in 2020. The volumetric method based on the use of the Lanzoni or Burkard pollen sampler was employed in the study. In 2020, the pollen season in the analyzed plant family began in the second half of June and ended during the first ten days of October. The earliest pollen season onset was recorded in Lublin (June 13th) and Szczecin (June 14th), whereas the latest beginning was noted in Wroclaw (July 5th). The earliest and latest end of the pollen season was recorded in Bialystok (September 6th) and in Olszyn (October 5th), respectively. In terms of length, the season was characterized by the shortest duration in Wroclaw (70 days) and the longest duration in Olsztyn (106 days). In most of the analyzed cities, maximum pollen concentrations were detected in the second half of August, and the highest values were recorded in Zielona Gora and Sosnowiec. Compared to 2019 and 2018, relatively low sums of the annual concentrations of Chenopodiaceae/Amaranthaceae pollen grains, i.e. in the range of 35–231, were recorded in Poland in 2020. The highest values of this parameter were reported in Olsztyn (231) and Lublin (230), whereas the lowest value was noted in Bialystok (35). The relatively low maximum concentrations of Chenopodiaceae/Amaranthaceae pollen recorded during the study year indicate a low risk of development of allergy symptoms induced by the presence of pollen of this taxon in the air.

##plugins.themes.bootstrap3.article.details##

Jak cytować
Piotrowska-Weryszko , K., Weryszko-Chmielewska , E., Sulborska, A., Puc , M., Malkiewicz , M., Siergiejko , Z., Dąbrowska-Zapart , K., Ziemianin , M., Rapiejko , A., Wieczorkiewicz , A., Jurkiewicz , D., Kalinowska , E., & Lipiec , A. (2020). Concentration of pollen of Chenopodiaceae/Amaranthaceae plants in the air of selected Polish cities in 2020. Alergoprofil, 16(4), 34-40. https://doi.org/10.24292/10.24292/01.AP.164311220.X
Dział
MEDICAL AEROBIOLOGY

Bibliografia

1. Piotrowska K. Comparison of Alnus, Corylus and Betula pollen counts in Lublin (Poland) and Skien (Norway). Ann Agric Environ Med. 2004; 11(2): 205-8.
2. Garcia-Mozo H, Dominguez-Vilches E, Galan C. Airborne allergenic pollen in natural areas: Hornachuelos Natural Park, Cordoba, southern Spain. Ann Agric Environ Med. 2007; 14: 63-9.
3. Ščevková J, Dušička J, Chrenová J et al. Annual pollen spectrum variations in the air of Bratislava (Slovakia): years 2002–2009. Aerobiologia. 2010; 26: 227-89. http://doi.org/10.1007/s10453-010-9163-1.
4. Melgar M, Trigo MM, Recio M et al. Atmospheric pollen dynamics in Münster, north-western Germany: a three-year study (2004–2006). Aerobiologia. 2012; 28: 423-34. http://doi.org/10.1007/s10453-012-9246-2.
5. Rodriguez de la Cruz D, Sánchez-Reyes E, Sánchez-Sánchez J. Analysis of Chenopodiaceae-Amaranthaceae airborne pollen in Salamanca, Spain. Turk J Bot 2012; 36: 336-43. http://doi.org/10.3906/bot-1105-17.
6. Giner MM, García JSC, Camacho CN. Seasonal fluctuations of the airborne pollen spectrum in Murcia (SE Spain). Aerobiologia. 2002; 18: 141-51.
7. Majeed HT, Periago C, Alarcón M et al. Airborne pollen parameters and their relationship with meteorological variables in NE Iberian Peninsula. Aerobiologia. 2018; 34: 375-88. https://doi.org/10.1007/s10453-018-9520-z.
8. Kiared (Ould-Amara) G, Bessedik M, Riding JB. The aeropalynology of Es-Sénia airport, Oran, northwest Algeria. Palynology. 2017; 41(1): 121-31. http://doi.org/10.1080/01916122.2015.1112944.
9. Taia WK, Ibrahim MI, Bassiouni EM. Study Of The Airborne Pollen Grains In Rosetta, Egypt. Int J Curr Adv Res. 2019; 3(3): 122-9.
10. Helfman-Hertzog I, Kutiel H, Levetin E et al. The impact of Sharav weather conditions on airborne pollen in Jerusalem and Tel Aviv (Israel). Aerobiologia. 2018, 34: 497-511. http://doi.org/10.1007/s10453-018-9526-6.
11. Al-Dousari AM, Ibrahim MI, Al-Dousar N et al. Pollen in aeolian dust with relation to allergy and asthma in Kuwait. Aerobiologia. 2018; 34: 325-36. http://doi.org/10.1007/s10453-018-9516-8.
12. Al-Nesf MA, Gharbi D, Mobayed HM et al. The association between airborne pollen monitoring and sensitization in the hot desert climate. Clin Transl Allergy. 2020; 10: 35. http://doi.org/10.1186/s13601-020-00339-6.
13. Singh N, Singh U, Singh D et al. Correlation of pollen counts and number of hospital visits of asthmatic and allergic rhinitis patients. Lung India. 2017; 34: 127-31. http://doi.org/10.4103/0970-2113.201313.
14. Cronquist A. An integrated system of classification of flowering plants. Colombia University Press, New York 1981.
15. The Angiosperm Phylogeny Group (APG IV). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc. 2016; 181: 1-20. http://doi.org/10.1111/boj.12385.
16. Beug HJ. Leitfaden der Pollenbestimmung für Mitteleuropa and angrenzende Gebiete. Verlag Dr. Fredrich Pfeil, München 2004.
17. Rutkowski L. Klucz do oznaczania roślin naczyniowych Polski niżowej. 2nd ed. Wydawnictwo Naukowe PWN, Warszawa 2008.
18. Edmondson JR. Chenopodiaceae. In: Tutin TG, Burges NA, Chater AO et al (ed). Flora Europaea Psilotaceae to Plantaceae Vol. 1. Cambridge University Press, Cambridge 1993.
19. Rapiejko P, Weryszko-Chmielewska E, Chłopek K et al. Pyłek roślin złożonych w sezonie 2000. Alergia. 2001; 2: 13-5.
20. Silny W, Czarnecka-Operacz M. Alergeny powietrznopochodne. Przewodnik Lekarza. 2001; 4(3): 112-7.
21. Smith EG. Sampling and Identifying Allergenic Pollens and Molds. Blewstone Press, San Antonio, Texas 1990.
22. Ruiz-Valenzuela L, Aguilera F. Trends in airborne pollen and pollen-season-related features of anemophilous species in Jaen (south Spain): A 23-year perspective. Atmos Environ. 2018; 180: 234-43. http://doi.org/10.1016/j.atmosenv.2018.03.012.
23. Alcázar P, Stach A, Nowak M et al. Comparison of airborne herb pollen types in Córdoba (South-western Spain) and Poznan (Western Poland). Aerobiologia. 2009; 25: 55-63. http://doi.org/10.1007/s10453-009-9109-7.
24. Puc M. Meteorological factors and pollen season dynamics of selected herbaceous plants in Szczecin, 2004-2008. Acta Agrobot. 2009; 62(2): 97-109.
25. Puc M, Rapiejko P, Magyar D et al. Goosefoot – a plant that likes drought. The goosefoot family pollen season in 2019 in Poland, Hungary and Slovakia. Alergoprofil. 2020; 16(3): 18-25. http://doi.org/10.24292/01.AP.163180920.
26. Malkiewicz M, Chłopek K, Dąbrowska-Zapart K et al. The goosefoot in the air of selected Polish cities in 2018. Alergoprofil. 2018; 14(4): 105-10. http://doi.org/10.24292/01.AP.144281218.
27. Kasprzyk I. Sezonowe zmiany koncentracji ziaren pyłku w powietrzu. In: Weryszko-Chmielewska E (ed). Aerobiologia. Wyd. Akademii Rolniczej, Lublin 2007.
28. Lipiec A, Puc M, Malkiewicz M et al. The analysis of goosefoot pollen count in selected Polish cities in 2012. Alergoprofil. 2012; 3(8): 43-6.
29. Szczepanek K. Pollen calendar for Cracow (southern Poland), 1982-1991. Aerobiologia. 1994; 10: 65-70.
30. Piotrowska-Weryszko K, Weryszko-Chmielewska E. The airborne pollen calendar for Lublin, central-eastern Poland. Ann Agric Environ Med. 2014; 21(3): 487-91. http://doi. org/10.5604/12321966.1120598.