Oko i SARS-CoV-2 w 2022 r. Artykuł przeglądowy

##plugins.themes.bootstrap3.article.main##

Andrzej Grzybowski

Abstrakt

Objawy oczne COVID-19 są rzadkie, jednak najczęściej występują jako zapalenie spojówek. Znacznie rzadziej stwierdza się zmiany siatkówkowe, w tym: poszerzone naczynia żylne, kręte naczynia krwionośne, krwotoczki śródsiatkówkowe oraz kłębki waty. Ponadto mogą wystąpić obrzęk powiek oraz ich podrażnienie, najczęściej w połączeniu z przekrwieniem spojówek. Co więcej, zakażeniu COVID-19 mogą towarzyszyć różnego rodzaju zaburzenia neurookulistyczne oraz – w rzadkich przypadkach – mukormykoza. Odnotowano różne powikłania oczne po szczepieniu przeciwko COVID-19, w tym porażenie nerwu twarzowego, porażenie nerwu odwodzącego, ostrą neuroretinopatię plamkową, zakrzepicę żyły ocznej górnej, odrzucenie przeszczepu rogówki, zapalenie błony naczyniowej oka, centralną chorioretinopatię surowiczą, reaktywację choroby Vogta-Koyanagiego-Harady i początek choroby Gravesa-Basedowa. Odnotowano też urazy chemiczne oczu u dzieci spowodowane przez środki dezynfekcyjne do rąk. Chociaż liczne badania potwierdziły aktywność antywirusową chlorku benzalkoniowego, to jego rola w tym zakresie wymaga dalszych badań.

Pobrania

Dane pobrania nie są jeszcze dostepne

##plugins.themes.bootstrap3.article.details##

Jak cytować
1.
Grzybowski A. Oko i SARS-CoV-2 w 2022 r. Ophthatherapy [Internet]. 20 grudzień 2021 [cytowane 20 maj 2024];8(4):284-91. Dostępne na: https://journalsmededu.pl/index.php/ophthatherapy/article/view/1730
Dział
Koronawirus – raport specjalny

Bibliografia

1. Jevnikar K, Jaki Mekjavic P, Vidovic Valentincic N et al. An Update on COVID-19 Related Ophthalmic Manifestations. Ocul Immunol Inflamm. 2021; 29(4): 684-9. http://doi.org/10.1080/09273948.2021.1896008.
2. Zhong Y, Wang K, Zhu Y et al. Ocular manifestations in COVID-19 patients: A systematic review and meta-analysis. Travel Med Infect Dis. 2021; 44: 102191. http://doi.org/10.1016/j.tmaid.2021.102191.
3. Deng W, Bao L, Gao H et al. Ocular conjunctival inoculation of SARS-CoV-2 can cause mild COVID-19 in rhesus macaques. Nat Commun. 2020; 11(1): 4400. http://doi.org/10.1038/s41467-020-18149-6.
4. Seah IYJ, Anderson DE, Kang AEZ et al. Assessing Viral Shedding and Infectivity of Tears in Coronavirus Disease 2019 (COVID-19) Patients. Ophthalmology. 2020; 127(7): 977-9. http://doi.org/10.1016/j.ophtha.2020.03.026.
5. Szczęśniak M, Brydak-Godowska J. SARS-CoV-2 and the Eyes: A Review of the Literature on Transmission, Detection, and Ocular Manifestations. Med Sci Monit. 2021; 27: e931863. http://doi.org/10.12659/msm.931863.
6. Leonardi A, Rosani U, Brun P. Ocular Surface Expression of SARS-CoV-2 Receptors. Ocul Immunol Inflamm. 2020; 28(5): 735-8. http://doi.org/10.1080/09273948.2020.1772314.
7. Chen YY, Yen YF, Huang LY et al. Manifestations and Virus Detection in the Ocular Surface of Adult COVID-19 Patients: A Meta-Analysis. J Ophthalmol. 2021; 2021: 9997631. http://doi.org/10.1155/2021/9997631.
8. Almazroa A, Alamri S, Alabdulkader B et al. Ocular transmission and manifestation for coronavirus disease: a systematic review. Int Health. 2021. http://doi.org/10.1093/inthealth/ihab028.
9. American Academy of Ophthalmology. Important coronavirus updates for ophthalmologists. (access: 17.01.2022).
10. Jin YP, Trope GE, El-Defrawy S et al. Ophthalmology-focused publications and findings on COVID-19: A systematic review. Eur J Ophthalmol. 2021; 31(4): 1677-87. http://doi.org/10.1177/1120672121992949.
11. Nasiri N, Sharifi H, Bazrafshan A et al. Ocular Manifestations of COVID-19: A Systematic Review and Meta-analysis. J Ophthalmic Vis Res. 2021; 16(1): 103-12. http://doi.org/10.18502/jovr.v16i1.8256.
12. Ulhaq ZS, Soraya GV. The prevalence of ophthalmic manifestations in COVID-19 and the diagnostic value of ocular tissue/fluid. Graefes Arch Clin Exp Ophthalmol. 2020; 258(6): 1351-2. http://doi.org/10.1007/s00417-020-04695-8.
13. Aggarwal K, Agarwal A, Jaiswal N et al. Ocular surface manifestations of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. PLoS One. 2020; 15(11): e0241661. http://doi.org/10.1371/journal.pone.0241661.
14. Wu P, Duan F, Luo C et al. Characteristics of Ocular Findings of Patients With Coronavirus Disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol. 2020; 138(5): 575-8. http://doi.org/10.1001/jamaophthalmol.2020.1291.
15. Ma N, Li P, Wang X et al. Ocular Manifestations and Clinical Characteristics of Children With Laboratory-Confirmed COVID-19 in Wuhan, China. JAMA Ophthalmol. 2020; 138(10): 1079-86. http://doi.org/10.1001/jamaophthalmol.2020.3690.
16. Wu P, Liang L, Chen C et al. A child confirmed COVID-19 with only symptoms of conjunctivitis and eyelid dermatitis. Graefes Arch Clin Exp Ophthalmol. 2020; 258(7): 1565-6. http://doi.org/10.1007/s00417-020-04708-6.
17. Wang JG, Zhong ZJ, Li M et al. Coronavirus Disease 2019-Related Multisystem Inflammatory Syndrome in Children: A Systematic Review and Meta-Analysis. Biochem Res Int. 2021; 2021: 5596727. http://doi.org/10.1155/2021/5596727.
18. Daruich A, Martin D, Bremond-Gignac D. Ocular manifestation as first sign of Coronavirus Disease 2019 (COVID-19): Interest of telemedicine during the pandemic context. J Fr Ophtalmol. 2020; 43(5): 389-91. http://doi.org/10.1016/j.jfo.2020.04.002.
19. Azari AA, Barney NP. Conjunctivitis: a systematic review of diagnosis and treatment. Jama . 2013; 310(16): 1721-9. http://doi.org/10.1001/jama.2013.280318.
20. Sindhuja K, Lomi N, Asif MI et al. Clinical profile and prevalence of conjunctivitis in mild COVID-19 patients in a tertiary care COVID-19 hospital: A retrospective cross-sectional study. Indian J Ophthalmol. 2020; 68(8): 1546-50. http://doi.org/10.4103/ijo.IJO_1319_20.
21. Invernizzi A, Torre A, Parrulli S et al. Retinal findings in patients with COVID-19: Results from the SERPICO-19 study. EClinicalMedicine. 2020; 27: 100550. http://doi.org/10.1016/j.eclinm.2020.100550.
22. Insausti-García A, Reche-Sainz JA, Ruiz-Arranz C et al. Papillophlebitis in a COVID-19 patient: inflammation and hypercoagulable state. Eur J Ophthalmol. 2020: 1120672120947591. http://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104982.
23. Gascon P, Briantais A, Bertrand E et al. Covid-19-associated retinopathy: a case report. Ocul Immunol Inflamm. 2020; 28(8): 1293-7.
24. Benito-Pascual B, Gegúndez JA, Díaz-Valle D et al. Panuveitis and optic neuritis as a possible initial presentation of the novel coronavirus disease 2019 (COVID-19). Ocul Immunol Inflammation. 2020; 28(6): 922-5.
25. Acharya S, Diamond M, Anwar S et al. Unique case of central retinal artery occlusion secondary to COVID-19 disease. IDCases. 2020; 21:e00867.
26. Dumitrascu OM, Volod O, Bose S et al. Acute ophthalmic artery occlusion in a COVID-19 patient on apixaban. J Stroke Cerebrovasc Dis. 2020; 29(8): 104982. http://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104982.
27. Sheth JU, Narayanan R, Goyal J et al. Retinal vein occlusion in COVID-19: A novel entity. Indian J Ophthalmol. 2020; 68(10): 2291-3. http:// doi.org/10.4103/ijo.IJO_2380_20.
28. Bostanci Ceran B, Ozates S. Ocular manifestations of coronavirus disease 2019. Graefes Arch Clin Exp Ophthalmol. 2020; 258(9): 1959-63. http://doi.org/10.1007/s00417-020-04777-7.
29. Méndez Mangana C, Barraquer Kargacin A, Barraquer RI. Episcleritis as an ocular manifestation in a patient with COVID-19. Acta Ophthalmol. 2020; 98(8): e1056-e7. http://doi.org/10.1111/aos.14484.
30. Otaif W, Al Somali AI, Al Habash A. Episcleritis as a possible presenting sign of the novel coronavirus disease: A case report. Am J Ophthalmol Case Rep. 2020; 20: 100917. http://doi.org/10.1016/j.ajoc.2020.100917.
31. Iriqat S, Yousef Q, Ereqat S. Clinical Profile of COVID-19 Patients Presenting with Uveitis – A Short Case Series. Int Med Case Rep J. 2021; 14: 421-7. http://doi.org/10.2147/imcrj.S312461.
32. Ortiz-Seller A, Martínez Costa L, Hernández-Pons A et al. Ophthalmic and Neuro-ophthalmic Manifestations of Coronavirus Disease 2019 (COVID-19). Ocul Immunol Inflamm. 2020; 28(8): 1285-9.
33. Zhou S, Jones-Lopez EC, Soneji DJ et al. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Optic Neuritis and Myelitis in COVID-19. J Neuroophthalmol. 2020; 40(3): 398-402. http://doi.org/10.1097/wno.0000000000001049.
34. Manolopoulos A, Katsoulas G, Kintos V et al. Isolated Abducens Nerve Palsy in a Patient With COVID-19: A Case Report and Literature Review. Neurologist. 2021. http://doi.org/10.1097/nrl.0000000000000382.
35. Francis JE. Abducens Palsy and Anosmia Associated with COVID-19: A Case Report. Br Ir Orthopt J. 2021; 17(1): 8-12. http://doi.org/10.22599/bioj.167.
36. Dinkin M, Gao V, Kahan J et al. COVID-19 presenting with ophthalmoparesis from cranial nerve palsy. Neurology. 2020; 95(5): 221-3. http://doi.org/10.1212/wnl.0000000000009700.
37. Greer CE, Bhatt JM, Oliveira CA et al. Isolated Cranial Nerve 6 Palsy in 6 Patients With COVID-19 Infection. J Neuroophthalmol. 2020; 40(4): 520-2.
38. Zhao H, Shen D, Zhou H et al. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol. 2020; (5): 383-4. http://doi.org/10.1016/s1474-4422(20)30109-5.
39. Caress JB, Castoro RJ, Simmons Z et al. COVID-19-associated Guillain-Barré syndrome: The early pandemic experience. Muscle Nerve. 2020; 62(4): 485-91. http://doi.org/10.1002/mus.27024.
40. Gutiérrez-Ortiz C, Méndez-Guerrero A, Rodrigo-Rey S et al. Miller Fisher syndrome and polyneuritis cranialis in COVID-19. Neurology. 2020; 95(5): e601-e5. http://doi.org/10.1212/wnl.0000000000009619.
41. Reyes-Bueno JA, García-Trujillo L, Urbaneja P et al. Miller-Fisher syndrome after SARS-CoV-2 infection. Eur J Neurol. 2020; 27(9): 1759-61. http://doi.org/10.1111/ene.14383.
42. Sundaram N, Bhende T, Yashwant R et al. Mucormycosis in COVID-19 patients. Indian J Ophthalmol. 2021; 69(12): 3728-33.
43. Fathima AS, Mounika VL, Kumar VU et al. Mucormycosis: A triple burden in patients with diabetes during COVID-19 Pandemic. Health Sci Rev (Oxf). 2021; 1: 100005. http://doi.org/10.1016/j.hsr.2021.100005.
44. Bhattacharyya A, Sarma P, Kaur H et al. COVID-19-associated rhino-orbital-cerebral mucormycosis: A systematic review, meta-analysis, and meta-regression analysis. Systematic Review and Meta Analysis. Indian J Pharmacol. 2021; 53(6): 499-510. http://doi.org/10.4103/ijp.ijp_839_21.
45. Sen M, Honavar SG, Sharma N et al. COVID-19 and Eye: A Review of Ophthalmic Manifestations of COVID-19. Indian J Ophthalmol. 2021; 69(3): 488-509. http://doi.org/10.4103/ijo.IJO_297_21.
46. Ng XL, Betzler BK, Testi I et al. Ocular Adverse Events After COVID-19 Vaccination. Ocul Immunol Inflamm. 2021; 24: 1-9. http://doi.org/10.1080/09273948.2021.1976221.
47. Bolletta E, Iannetta D, Mastrofilippo V et al. Uveitis and Other Ocular Complications Following COVID-19 Vaccination. J Clin Med. 2021; 10(24): 5960.
48. https://ourworldindata.org/covid-vaccinations .
49. Martin GC, Le Roux G, Guindolet D et al. Pediatric Eye Injuries by Hydroalcoholic Gel in the Context of the Coronavirus Disease 2019 Pandemic. JAMA Ophthalmol. 2021; 139(3): 348-51.
50. Yangzes S, Grewal S, Gailson T et al. Hand Sanitizer–Induced Ocular Injury: A COVID-19 Hazard in Children. JAMA Ophthalmol. 2021; 139(3): 362-4. http://doi.org/10.1001/jamaophthalmol.2020.6351.
51. Merchel Piovesan Pereira B, Tagkopoulos I. Benzalkonium Chlorides: Uses, Regulatory Status, and Microbial Resistance. Appl Environ Microbiol. 2019; 85(13): e00377-19.
52. Hand Hygiene Recommendations. Guidance for Healthcare Providers about Hand Hygiene and COVID-19 (access: 12.09.2021).
53. Schrank CL, Minbiole KPC, Wuest WM. Are Quaternary Ammonium Compounds, the Workhorse Disinfectants, Effective against Severe Acute Respiratory Syndrome-Coronavirus-2? ACS Infect Dis. 2020; 6(7): 1553-7.
54. Meister TL, Brüggemann Y, Todt D et al. Virucidal Efficacy of Different Oral Rinses Against Severe Acute Respiratory Syndrome Coronavirus 2. J Infect Dis. 2020; 222(8): 1289-92.
55. Rabenau HF, Kampf G, Cinatl J et al. Efficacy of various disinfectants against SARS coronavirus. J Hosp Infect. 2005; 61(2): 107-11.
56. Kampf G, Todt D, Pfaender S et al. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020; 104(3): 246-51.
57. Ogilvie BH, Solis-Leal A, Lopez JB et al. Alcohol-free hand sanitizer and other quaternary ammonium disinfectants quickly and effectively inactivate SARS-CoV-2. J Hosp Infect. 2021; 108: 142-5.
58. Pedreira A, Taşkın Y, García MR. A Critical Review of Disinfection Processes to Control SARS-CoV-2 Transmission in the Food Industry. Foods. 2021; 10(2): 283.
59. Hirose R, Bandou R, Ikegaya H et al. Disinfectant effectiveness against SARS-CoV-2 and influenza viruses present on human skin: model- based evaluation. Clin Microbiol Infect. 2021; 27(7): 1042.e1-1042.e4.