Rola termografii w okulistyce Artykuł przeglądowy

##plugins.themes.bootstrap3.article.main##

Anna Modrzejewska

Abstrakt

Termografia ma zastosowanie w ocenie rozległości oraz nasilenia lokalnego przekrwienia i metabolizmu tkankowego, wykorzystując zjawisko wysokiej termoemisji. W okulistyce używana jest w diagnostyce stanów zapalnych gałki ocznej. Wzrost temperatury gałki ocznej obserwuje się w guzach nowotworowych takich jak czerniak oraz naczyniak błony naczyniowej. Obniżenie temperatury jako efekt zaburzeń ukrwienia stwierdza się w zatorach naczyniowych, jaskrze, retinopatii cukrzycowej czy AMD. Zaobserwowano niższą emisję promieniowania podczerwonego na powierzchni gałki ocznej w zespole suchego oka, na skutek zaburzonego filmu łzowego i szybszego parowania. Termografia jest metodą nieinwazyjną, szybką oraz obiektywną, która może w przyszłości stanowić uzupełnienie w diagnostyce wielu schorzeń okulistycznych.

Pobrania

Dane pobrania nie są jeszcze dostepne

##plugins.themes.bootstrap3.article.details##

Jak cytować
1.
Modrzejewska A. Rola termografii w okulistyce. Ophthatherapy [Internet]. 29 grudzień 2021 [cytowane 3 lipiec 2024];9(1):14-1. Dostępne na: https://journalsmededu.pl/index.php/ophthatherapy/article/view/1604
Dział
Diagnostyka

Bibliografia

1. Ring EFJ. The historical development of thermometry and thermal imaging in medicine. J Med Eng Technol. 2006; 30(4): 192-8. http://doi.org/10.1080/03091900600711332.
2. Tsai SR, Hamblin MR. Biological effects and medical applications of infrared radiation. J Photochem Photobiol B. 2017; 170: 197-207. http://doi.org/10.1016/j.jphotobiol.2017.04.014.
3. Zadeh HG, Haddadnia J, Ahmadinejad N et al. Assessing the Potential of Thermal Imaging in Recognition of Breast Cancer. BreastCare. 2015; 16(18): 8619-23. http://doi.org/10.7314/apjcp.2015.16.18.8619.
4. Mosier DA. Chapter 2 – Vascular Disorders and Thrombosis. Pathologic Basis of Veterinary Disease (Sixth Edition) 2017: 44-72.
5. Vadas P, Wasi S, Movat HZ et al. Extracellular phospholipase A2 mediates inflammatory hyperaemia. Nature. 1981; 15-21; 293(5833): 583-5. http://doi.org/10.1038/293583a0.
6. Jiang LJ, Ng EYK, Yeo ACB et al. A perspective on medical infrared imaging. J Med Eng Technol. 2005; 29(6): 257-67. http://doi.org/10.1080/03091900512331333158.
7. Ring EFJ, Ammer K. Infrared thermal imaging in medicine. Physiol Meas. 2012; 33(3): 33-46. http://doi.org/10.1088/0967-3334/33/3/R33.
8. Tattersall GJ. Infrared thermography: A non-invasive window into thermal physiology. Comp Biochem Physiol A Mol Integr Physiol. 2016; 202: 78-98. http://doi.org/10.1016/j.cbpa.2016.02.022.
9. Aliò J, Padron M. Influence of age on the temperature of the anterior segment of the eye. Measurements by infrared thermometry. Ophthalmic Res. 1982; 14(3): 153-9. http://doi.org/10.1159/000265187.
10. Bauer J, Dereń E. Standaryzacja badań termograficznych w medycynie i fizykoterapii. Inżynieria Biomedyczna. 2014; 20(1): 11.
11. Freeman RD, Fatt I. Environmental influences on ocular temperature. Invest Ophthalmol. 1973; 12(8): 596-602.
12. Shah AM, Galor A. Impact of Ocular Surface Temperature on Tear Characteristics: Current Insights. Clin Optom (Auckl). 2021; 13: 51-62. http://doi.org/10.2147/OPTO.S281601.
13. Sniegowski M, Erlanger M, Velez-Montoya R et al. Difference in ocular surface temperature by infrared thermography in phakic and pseudophakic patients. Clin Ophthalmol. 2015; 9: 461-6. http://doi.org/10.2147/OPTH.S69670.
14. Morgan PB, Soh MP, Efron N. Corneal surface temperature decreases with age. Cont Lens Anterior Eye. 1999; 22(1): 11-3. http://doi.org/10.1016/s1367-0484(99)80025-3.
15. Pattmöller J, Wang J, Zemova E et al. Correlation of corneal thickness, endothelial cell density and anterior chamber depth with ocular surface temperature in normal subjects. Z Med Phys. 2015; 25(3): 243-50. http://doi.org/10.1016/j.zemedi.2014.09.008.
16. Acharya UR, Ng EY, Yee GC et al. Analysis of normal human eye with different age groups using infrared images. J Med Syst. 2009; 33(3): 207-13. http://doi.org/10.1007/s10916-008-9181-5.
17. Alio J, Padron M. Normal variations in the thermographic pattern of the orbito-ocular region. Diagn Imaging. 1982; 51(2): 93-8.
18. Kamao T, Yamaguchi M, Kawasaki S et al. Screening for dry eye with newly developed ocular surface thermographer. Am J Ophthalmol. 2011; 151: 782-91. http://doi.org/10.1016/j.ajo.2010.10.033.
19. Versura P, Giannaccare G, Fresina M et al. Subjective discomfort symptoms are related to low corneal temperature in patients with evaporative dry eye. Cornea. 2015; 34: 1079-85. http://doi.org/10.1097/ICO.0000000000000512.
20. Craig JP, Singh I, Tomlinson A et al. The role of physiology in ocular surface temperature. Eye. 2000; 14: 635-41. http://doi.org/10.1038/eye.2000.156.
21. Żelichowska B, Różycki R, Tłustochowicz M. Przydatność termografii w diagnostyce zespołu suchego oka. Klin Oczna 2005; 7-9.
22. Azharuddin M, Bera SK, Datta H et al. Thermal fluctuation based study of aqueous deficient dry eyes by non-invasive thermal imaging. Exp Eye Res. 2014; 120: 97-102. http://doi.org/10.1016/j.exer.2014.01.007.
23. Su TY, Ho WT, Lu CY et al. Correlations among ocular surface temperature difference value, the tear meniscus height, Schirmer’s test and fluorescein tear film break up time. Br J Ophthalmol. 2015; 99(4): 482-7. http://doi.org/10.1136/bjophthalmol-2014-305183.
24. Fujishima H, Toda I, Yagi Y et al. Quantitative evaluation of postsurgical inflammation by infrared radiation thermometer and laser flarecell meter. J Cataract Refract Surg. 1994; 20(4): 451-4. http://doi.org/10.1016/s0886-3350(13)80183-6.
25. Khodabakhsh AJ, Zaidman G, Tabin G. Corneal surgery for severe phacoemulsification burns. Ophthalmology. 2004; 111(2): 332-4. http://doi.org/10.1016/j.ophtha.2003.06.004.
26. Donnenfeld ED, Olson RJ, Solomon R et al. Efficacy and wound temperature gradient of WhiteStar phacoemulsification through a 1.2 mm incision. J Cataract Refract Surg. 2003; 29(6): 1097-100. http://doi.org/10.1016/s0886-3350(02)01917-x.
27. Bissen-Miyajima H, Shimmura S, Tsubota K. Thermal effect on corneal incisions with different phacoemulsification ultrasonic tips. J Cataract Refract Surg. 1999; 25(1): 60-4. http://doi.org/10.1016/s0886-3350(99)80012-1.
28. Corvi A, Innocenti B, Mencucci R. Thermography used for analysis and comparison of different cataract surgery procedures based on phacoemulsification. Physiol Meas. 2006; 27(4): 371-84. http://doi.org/10.1088/0967-3334/27/4/004.
29. Giannaccare G, Fresina M, Agnifili L et al. Ocular-surface temperature modification by cataract surgery. J Cataract Refract Surg. 2016; 42(7): 983-9. http://doi.org/10.1016/j.jcrs.2016.04.023.
30. Shih SR, Li HY, Hsiao YL, et al. The application of temperature measurement of the eyes by digital infrared thermal imaging as a prognostic factor of methylprednisolone pulse therapy for Graves’ ophthalmopathy. Acta Ophthalmol. 2010; 88(5): 154-9. http://doi.org/10.1111/j.1755-3768.2010.01941.x.
31. Li X-M, Hu L, Hu J et al. Investigation of dry eye disease and analysis of the pathogenic factors in patients after cataract surgery. Cornea. 2007; 26: 16-20. http://doi.org/10.1097/ICO.0b013e31812f67ca.
32. Khanal S, Tomlinson A, Esakowitz L et al. Changes in corneal sensitivity and tear physiology after phacoemulsification. Ophthalmic Physiol. 2008; 28: 127-34. http://doi.org/10.1111/j.1475-1313.2008.00539.x.
33. Modrzejewska A, Cieszyński Ł, Zaborski D et al. Infrared thermography for the analysis of ocular surface temperature after phacoemulsification. Arq Bras Oftalmol. 2020; 83(3): 202-8. http://doi.org/10.5935/0004-2749.20200035.
34. Jones DB. Decision-making in the management of microbial keratitis. Ophthalmology. 1981; 88: 814-20. http://doi.org/10.1016/s0161-6420(81)34943-4.
35. Pepose JS, Wilhelmus KR. Divergent approaches to the management of corneal ulcers. Am J Ophthalmol. 1992; 114: 630-2. http://doi.org/10.1016/s0002-9394(14)74496-4.
36. Rietveld RP, ter Riet G, Bindels PJ et al. Predicting bacterial cause in infectious conjunctivitis: cohort study on informativeness of combinations of signs and symptoms. BMJ. 2004; 329: 206-10. http://doi.org/10.1136/bmj.38128.631319.AE.
37. Seal DV, Barrett SP, McGill JI. Aetiology and treatment of acute bacterial infection of the external eye. Br J Ophthalmol. 1982; 66: 357-60. http://doi.org/10.1136/bjo.66.6.357.
38. Saini JS, Jain AK, Kumar S et al. Neural network approach to classify infective keratitis. Curr Eye Res. 2003; 27: 111-6. http://doi.org/10.1076/ceyr.27.2.111.15949.
39. Klamann MKJ, Maier AK, Gonnermann J et al. Ocular surface temperature gradient is increased in eyes with bacterial corneal ulcers. Ophthalmic Res. 2013; 49: 52-6. http://doi.org/10.1159/000343774.
40. Kawali AA. Thermography in ocular inflammation. Indian J Radiol Imaging. 2013; 23(3): 281-3.
41. Modrzejewska A, Cieszyński Ł, Zaborski D. Imaging of Inflammatory Ocular Conditions with a Thermographic Camera. Klin Oczna. 2019; 4: 121.
42. Stroszczynski C, Hosten N, Bornfeld N et al. Choroidal Hemangioma: MR Findings and Differentiation from Uveal Melanoma. AJNR Am J Neuroradiol. 1998; 19: 1441-7.
43. Kruszewski S. Use of thermography and thermovision in medicine. Pol Przegl Radiol Med Nukl. 1971; 35(4): 441-4.
44. Wittig I, Kohlmann H, Lommatzsch PK et al. Static and dynamic infrared thermometry and thermography in malignant melanoma of the uvea and conjunctiva. Klin Monbl Augenheilkd. 1992; 201(5): 317-21. http://doi.org/10.1055/s-2008-1045909.
45. Buzug TM, Schumann S, Pfaffmann L et al. Functional infrared imaging for skin-cancer screening. Conf Proc IEEE Eng Med. Biol Soc. 2006; 1: 2766-9. http://doi.org/10.1109/IEMBS.2006.259895.
46. Iveković R, Lovrencić-Huzjan A, Mandić Z et al. Color Doppler flow imaging of ocular tumors. Croat Med J. 2000; 41(1): 72-5.
47. Yang YC, Kent D, Fenerty CH et al. Pulsatile ocular blood flow in eyes with untreated choroidal melanoma. Eye. 1997; 11: 331-4. http://doi.org/10.1038/eye.1997.70.
48. Olbryt M. Rola mikrośrodowiska nowotworowego w powstaniu i progresji czerniaka skóry. Postępy Hig Med Dośw. 2013; 67: 413-32.
49. Clarijs R, Schalkwijk L, Ruiter DJ et al. EMAP-II expression is associated with macrophage accumulation in primary uveal melanoma. Invest Ophthalmol Vis Sci. 2003; 44: 1801-6. http://doi.org/10.1167/iovs.02-0624.
50. Richmond A, Thomas H. Purification of melanoma growth stimulatory activity. J Cell Physiol. 1986; 129: 375–384. http://doi.org/10.1002/jcp.1041290316.
51. Lee CS, Jun IH, Kim TI et al. Expression of 12 cytokines in aqueous humour of uveal melanoma before and after combined Ruthenium-106 brachytherapy and transpupillary thermotherapy. Acta Ophthalmologica. 2012; 90(4): 314-20. http://doi.org/10.1111/j.1755-3768.2012.02392.x.
52. Modrzejewska A, Cieszyński Ł, Zaborski D et al. Thermography in clinical ophthalmic oncology. Arq Bras Oftalmol. 2021; 84(1): 22-30. http://doi.org/10.5935/0004-2749.20210004.
53. Archer DB. Doyne Lecture. Responses of retinal and choroidal vessels to ionizing radiation. Eye. 1993; 7: 1-13. http://doi.org/10.1038/eye.1993.3.
54. Konstantinidis L, Damato B. Intraocular Metastases-A Review. Asia Pac J Ophthalmol (Phila). 2017; 6(2): 208-14. http://doi.org/10.22608/APO.201712.
55. Sodi A, Giambene B, Falaschi G et al. Ocular surface temperature in central retinal vein occlusion: preliminary data. Eur J Ophthalmol. 2007; 17(5): 755-9. http://doi.org/10.1177/112067210701700511.
56. Chandrasekar B, Rao AP, Murugesan M et al. Ocular surface temperature measurement in diabetic retinopathy. Exp Eye Res. 2021; 211: 108749. http://doi.org/10.1177/112067210901900617.
57. Sodi A, Matteoli S, Giacomelli G et al. Ocular Surface Temperature in Age-Related Macular Degeneration. J Ophthalmol. 2014; 2014: 281010. http://doi.org/10.1155/2014/281010.
58. Klamann MK, Maier AK, Gonnermann J et al. Thermography: A New Option to Monitor Filtering Bleb Function? J Glaucoma. 2015; 24(4): 272-7. http://doi.org/10.1097/IJG.0b013e31825af0ca .