The role of thermography in ophthalmology Review article
Main Article Content
Abstract
Thermography is used to assess the extent and intensity of local hyperaemia and tissue metabolism based on the emitted radiation in the infrared range. In ophthalmology, it is used for the diagnosis of ocular inflammatory conditions. Increased ocular surface temperature is observed in tumours such as melanoma and uveal naevus. Reduced temperature as a result of blood flow disorders is detected in patients with vascular occlusion, glaucoma, diabetic retinopathy or AMD. Lower emission of infrared radiation on the ocular surface was observed in dry eye syndrome due to tear film instability and faster tear evaporation. Thermography is a non-invasive, fast and objective technique, and in the future it may complement the diagnostic process of many ophthalmic diseases.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright: © Medical Education sp. z o.o. License allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Address reprint requests to: Medical Education, Marcin Kuźma (marcin.kuzma@mededu.pl)
References
2. Tsai SR, Hamblin MR. Biological effects and medical applications of infrared radiation. J Photochem Photobiol B. 2017; 170: 197-207. http://doi.org/10.1016/j.jphotobiol.2017.04.014.
3. Zadeh HG, Haddadnia J, Ahmadinejad N et al. Assessing the Potential of Thermal Imaging in Recognition of Breast Cancer. BreastCare. 2015; 16(18): 8619-23. http://doi.org/10.7314/apjcp.2015.16.18.8619.
4. Mosier DA. Chapter 2 – Vascular Disorders and Thrombosis. Pathologic Basis of Veterinary Disease (Sixth Edition) 2017: 44-72.
5. Vadas P, Wasi S, Movat HZ et al. Extracellular phospholipase A2 mediates inflammatory hyperaemia. Nature. 1981; 15-21; 293(5833): 583-5. http://doi.org/10.1038/293583a0.
6. Jiang LJ, Ng EYK, Yeo ACB et al. A perspective on medical infrared imaging. J Med Eng Technol. 2005; 29(6): 257-67. http://doi.org/10.1080/03091900512331333158.
7. Ring EFJ, Ammer K. Infrared thermal imaging in medicine. Physiol Meas. 2012; 33(3): 33-46. http://doi.org/10.1088/0967-3334/33/3/R33.
8. Tattersall GJ. Infrared thermography: A non-invasive window into thermal physiology. Comp Biochem Physiol A Mol Integr Physiol. 2016; 202: 78-98. http://doi.org/10.1016/j.cbpa.2016.02.022.
9. Aliò J, Padron M. Influence of age on the temperature of the anterior segment of the eye. Measurements by infrared thermometry. Ophthalmic Res. 1982; 14(3): 153-9. http://doi.org/10.1159/000265187.
10. Bauer J, Dereń E. Standaryzacja badań termograficznych w medycynie i fizykoterapii. Inżynieria Biomedyczna. 2014; 20(1): 11.
11. Freeman RD, Fatt I. Environmental influences on ocular temperature. Invest Ophthalmol. 1973; 12(8): 596-602.
12. Shah AM, Galor A. Impact of Ocular Surface Temperature on Tear Characteristics: Current Insights. Clin Optom (Auckl). 2021; 13: 51-62. http://doi.org/10.2147/OPTO.S281601.
13. Sniegowski M, Erlanger M, Velez-Montoya R et al. Difference in ocular surface temperature by infrared thermography in phakic and pseudophakic patients. Clin Ophthalmol. 2015; 9: 461-6. http://doi.org/10.2147/OPTH.S69670.
14. Morgan PB, Soh MP, Efron N. Corneal surface temperature decreases with age. Cont Lens Anterior Eye. 1999; 22(1): 11-3. http://doi.org/10.1016/s1367-0484(99)80025-3.
15. Pattmöller J, Wang J, Zemova E et al. Correlation of corneal thickness, endothelial cell density and anterior chamber depth with ocular surface temperature in normal subjects. Z Med Phys. 2015; 25(3): 243-50. http://doi.org/10.1016/j.zemedi.2014.09.008.
16. Acharya UR, Ng EY, Yee GC et al. Analysis of normal human eye with different age groups using infrared images. J Med Syst. 2009; 33(3): 207-13. http://doi.org/10.1007/s10916-008-9181-5.
17. Alio J, Padron M. Normal variations in the thermographic pattern of the orbito-ocular region. Diagn Imaging. 1982; 51(2): 93-8.
18. Kamao T, Yamaguchi M, Kawasaki S et al. Screening for dry eye with newly developed ocular surface thermographer. Am J Ophthalmol. 2011; 151: 782-91. http://doi.org/10.1016/j.ajo.2010.10.033.
19. Versura P, Giannaccare G, Fresina M et al. Subjective discomfort symptoms are related to low corneal temperature in patients with evaporative dry eye. Cornea. 2015; 34: 1079-85. http://doi.org/10.1097/ICO.0000000000000512.
20. Craig JP, Singh I, Tomlinson A et al. The role of physiology in ocular surface temperature. Eye. 2000; 14: 635-41. http://doi.org/10.1038/eye.2000.156.
21. Żelichowska B, Różycki R, Tłustochowicz M. Przydatność termografii w diagnostyce zespołu suchego oka. Klin Oczna 2005; 7-9.
22. Azharuddin M, Bera SK, Datta H et al. Thermal fluctuation based study of aqueous deficient dry eyes by non-invasive thermal imaging. Exp Eye Res. 2014; 120: 97-102. http://doi.org/10.1016/j.exer.2014.01.007.
23. Su TY, Ho WT, Lu CY et al. Correlations among ocular surface temperature difference value, the tear meniscus height, Schirmer’s test and fluorescein tear film break up time. Br J Ophthalmol. 2015; 99(4): 482-7. http://doi.org/10.1136/bjophthalmol-2014-305183.
24. Fujishima H, Toda I, Yagi Y et al. Quantitative evaluation of postsurgical inflammation by infrared radiation thermometer and laser flarecell meter. J Cataract Refract Surg. 1994; 20(4): 451-4. http://doi.org/10.1016/s0886-3350(13)80183-6.
25. Khodabakhsh AJ, Zaidman G, Tabin G. Corneal surgery for severe phacoemulsification burns. Ophthalmology. 2004; 111(2): 332-4. http://doi.org/10.1016/j.ophtha.2003.06.004.
26. Donnenfeld ED, Olson RJ, Solomon R et al. Efficacy and wound temperature gradient of WhiteStar phacoemulsification through a 1.2 mm incision. J Cataract Refract Surg. 2003; 29(6): 1097-100. http://doi.org/10.1016/s0886-3350(02)01917-x.
27. Bissen-Miyajima H, Shimmura S, Tsubota K. Thermal effect on corneal incisions with different phacoemulsification ultrasonic tips. J Cataract Refract Surg. 1999; 25(1): 60-4. http://doi.org/10.1016/s0886-3350(99)80012-1.
28. Corvi A, Innocenti B, Mencucci R. Thermography used for analysis and comparison of different cataract surgery procedures based on phacoemulsification. Physiol Meas. 2006; 27(4): 371-84. http://doi.org/10.1088/0967-3334/27/4/004.
29. Giannaccare G, Fresina M, Agnifili L et al. Ocular-surface temperature modification by cataract surgery. J Cataract Refract Surg. 2016; 42(7): 983-9. http://doi.org/10.1016/j.jcrs.2016.04.023.
30. Shih SR, Li HY, Hsiao YL, et al. The application of temperature measurement of the eyes by digital infrared thermal imaging as a prognostic factor of methylprednisolone pulse therapy for Graves’ ophthalmopathy. Acta Ophthalmol. 2010; 88(5): 154-9. http://doi.org/10.1111/j.1755-3768.2010.01941.x.
31. Li X-M, Hu L, Hu J et al. Investigation of dry eye disease and analysis of the pathogenic factors in patients after cataract surgery. Cornea. 2007; 26: 16-20. http://doi.org/10.1097/ICO.0b013e31812f67ca.
32. Khanal S, Tomlinson A, Esakowitz L et al. Changes in corneal sensitivity and tear physiology after phacoemulsification. Ophthalmic Physiol. 2008; 28: 127-34. http://doi.org/10.1111/j.1475-1313.2008.00539.x.
33. Modrzejewska A, Cieszyński Ł, Zaborski D et al. Infrared thermography for the analysis of ocular surface temperature after phacoemulsification. Arq Bras Oftalmol. 2020; 83(3): 202-8. http://doi.org/10.5935/0004-2749.20200035.
34. Jones DB. Decision-making in the management of microbial keratitis. Ophthalmology. 1981; 88: 814-20. http://doi.org/10.1016/s0161-6420(81)34943-4.
35. Pepose JS, Wilhelmus KR. Divergent approaches to the management of corneal ulcers. Am J Ophthalmol. 1992; 114: 630-2. http://doi.org/10.1016/s0002-9394(14)74496-4.
36. Rietveld RP, ter Riet G, Bindels PJ et al. Predicting bacterial cause in infectious conjunctivitis: cohort study on informativeness of combinations of signs and symptoms. BMJ. 2004; 329: 206-10. http://doi.org/10.1136/bmj.38128.631319.AE.
37. Seal DV, Barrett SP, McGill JI. Aetiology and treatment of acute bacterial infection of the external eye. Br J Ophthalmol. 1982; 66: 357-60. http://doi.org/10.1136/bjo.66.6.357.
38. Saini JS, Jain AK, Kumar S et al. Neural network approach to classify infective keratitis. Curr Eye Res. 2003; 27: 111-6. http://doi.org/10.1076/ceyr.27.2.111.15949.
39. Klamann MKJ, Maier AK, Gonnermann J et al. Ocular surface temperature gradient is increased in eyes with bacterial corneal ulcers. Ophthalmic Res. 2013; 49: 52-6. http://doi.org/10.1159/000343774.
40. Kawali AA. Thermography in ocular inflammation. Indian J Radiol Imaging. 2013; 23(3): 281-3.
41. Modrzejewska A, Cieszyński Ł, Zaborski D. Imaging of Inflammatory Ocular Conditions with a Thermographic Camera. Klin Oczna. 2019; 4: 121.
42. Stroszczynski C, Hosten N, Bornfeld N et al. Choroidal Hemangioma: MR Findings and Differentiation from Uveal Melanoma. AJNR Am J Neuroradiol. 1998; 19: 1441-7.
43. Kruszewski S. Use of thermography and thermovision in medicine. Pol Przegl Radiol Med Nukl. 1971; 35(4): 441-4.
44. Wittig I, Kohlmann H, Lommatzsch PK et al. Static and dynamic infrared thermometry and thermography in malignant melanoma of the uvea and conjunctiva. Klin Monbl Augenheilkd. 1992; 201(5): 317-21. http://doi.org/10.1055/s-2008-1045909.
45. Buzug TM, Schumann S, Pfaffmann L et al. Functional infrared imaging for skin-cancer screening. Conf Proc IEEE Eng Med. Biol Soc. 2006; 1: 2766-9. http://doi.org/10.1109/IEMBS.2006.259895.
46. Iveković R, Lovrencić-Huzjan A, Mandić Z et al. Color Doppler flow imaging of ocular tumors. Croat Med J. 2000; 41(1): 72-5.
47. Yang YC, Kent D, Fenerty CH et al. Pulsatile ocular blood flow in eyes with untreated choroidal melanoma. Eye. 1997; 11: 331-4. http://doi.org/10.1038/eye.1997.70.
48. Olbryt M. Rola mikrośrodowiska nowotworowego w powstaniu i progresji czerniaka skóry. Postępy Hig Med Dośw. 2013; 67: 413-32.
49. Clarijs R, Schalkwijk L, Ruiter DJ et al. EMAP-II expression is associated with macrophage accumulation in primary uveal melanoma. Invest Ophthalmol Vis Sci. 2003; 44: 1801-6. http://doi.org/10.1167/iovs.02-0624.
50. Richmond A, Thomas H. Purification of melanoma growth stimulatory activity. J Cell Physiol. 1986; 129: 375–384. http://doi.org/10.1002/jcp.1041290316.
51. Lee CS, Jun IH, Kim TI et al. Expression of 12 cytokines in aqueous humour of uveal melanoma before and after combined Ruthenium-106 brachytherapy and transpupillary thermotherapy. Acta Ophthalmologica. 2012; 90(4): 314-20. http://doi.org/10.1111/j.1755-3768.2012.02392.x.
52. Modrzejewska A, Cieszyński Ł, Zaborski D et al. Thermography in clinical ophthalmic oncology. Arq Bras Oftalmol. 2021; 84(1): 22-30. http://doi.org/10.5935/0004-2749.20210004.
53. Archer DB. Doyne Lecture. Responses of retinal and choroidal vessels to ionizing radiation. Eye. 1993; 7: 1-13. http://doi.org/10.1038/eye.1993.3.
54. Konstantinidis L, Damato B. Intraocular Metastases-A Review. Asia Pac J Ophthalmol (Phila). 2017; 6(2): 208-14. http://doi.org/10.22608/APO.201712.
55. Sodi A, Giambene B, Falaschi G et al. Ocular surface temperature in central retinal vein occlusion: preliminary data. Eur J Ophthalmol. 2007; 17(5): 755-9. http://doi.org/10.1177/112067210701700511.
56. Chandrasekar B, Rao AP, Murugesan M et al. Ocular surface temperature measurement in diabetic retinopathy. Exp Eye Res. 2021; 211: 108749. http://doi.org/10.1177/112067210901900617.
57. Sodi A, Matteoli S, Giacomelli G et al. Ocular Surface Temperature in Age-Related Macular Degeneration. J Ophthalmol. 2014; 2014: 281010. http://doi.org/10.1155/2014/281010.
58. Klamann MK, Maier AK, Gonnermann J et al. Thermography: A New Option to Monitor Filtering Bleb Function? J Glaucoma. 2015; 24(4): 272-7. http://doi.org/10.1097/IJG.0b013e31825af0ca .