Rola zbilansowanej suplementacji w diecie chorych ze zwyrodnieniem plamki związanym z wiekiem Artykuł przeglądowy

##plugins.themes.bootstrap3.article.main##

Iwona Kusz vel Sobczuk
Anna Święch

Abstrakt

Cel: Celem pracy było omówienie roli zbilansowanej suplementacji w diecie chorych ze zwyrodnieniem plamki związanym z wiekiem (AMD, age-related macular degeneration).


Metody: Dokonano przeglądu piśmiennictwa z ostatnich lat dotyczącego roli witamin: D, C, E, B6, B12, cynku, luteiny, zeaksantyny, kwasu omega-3 oraz kwasu foliowego w prewencji AMD.


Wyniki: Witaminy, składniki mineralne i karotenoidy są niezbędne do prawidłowego funkcjonowania siatkówki, ponieważ modulują odpowiedź zapalną i immunologiczną.


Wnioski: Omówione w pracy witaminy, minerały oraz karotenoidy mają właściwości przeciwzapalne oraz przeciwutleniające, dzięki czemu zmniejszają ryzyko progresji AMD. W związku z powyższym należy zapewnić właściwe stężenie tych substancji w diecie pacjentów z AMD.

Pobrania

Dane pobrania nie są jeszcze dostepne

##plugins.themes.bootstrap3.article.details##

Jak cytować
1.
Kusz vel Sobczuk I, Święch A. Rola zbilansowanej suplementacji w diecie chorych ze zwyrodnieniem plamki związanym z wiekiem. Ophthatherapy [Internet]. 15 marzec 2021 [cytowane 24 listopad 2024];8(1):19-5. Dostępne na: https://journalsmededu.pl/index.php/ophthatherapy/article/view/1159
Dział
Terapie zachowawcze

Bibliografia

1. Kauppinen A, Paterno JJ, Blasiak J et al. Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci. 2016; 73: 1765-86.
2. Klein R, Klein BE, Tomany SC et al. Ten-year incidence of age-related maculopathy and smoking and drinking: The Beaver Dam Eye Study. Am J Epidemiol. 2002; 156: 589-98.
3. Alsalem JA, Patel D, Susarla R et al. Characterization of Vitamin D Production by Human Ocular Barrier Cells. Invest Ophthalmol Vis Sci. 2014; 55(4): 2140-7.
4. Hewison M. An update on vitamin D and human immunity. Clin Endocrinol (Oxf). 2012; 76: 315-25.
5. Jeffery LE, Burke F, Mura M et al. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J Immunol. 2009; 183: 5458-67.
6. Bartels LE, Hvas CL, Agnholt J et al. Human dendritic cell antigen presentation and chemotaxis are inhibited by intrinsic 25-hydroxy vitamin D activation. Int Immunopharmacol. 2010; 10: 922-8.
7. Kaarniranta K, Pawlowska E, Szczepanska J et al. Can vitamin D protect against age-related macular degeneration or slow its progression? Acta Biochim Pol. 2019; 66(2): 147-58.
8. Millen AE, Meyers KJ, Liu Z et al. Association between vitamin D status and age-related macular degeneration by genetic risk. JAMA Ophthalmol. 2015; 133(10): 1171-9.
9. Rusińska A, Płudowski P, Walczak M et al. Vitamin D Supplementation Guidelines for General Population and Groups at Risk of vitamin D Deficiency in Poland – Recommendations of the Polish Society of Pediatric endocrinology and Diabetes and the expert Panel with Participation of National Specialist Consultants and Representatives of Scientific Societies – 2018 Update. Front Endocrinol (Lausanne). 2018; 9: 246.
10. Li LH, Chung-Yung Lee J, Hang Leung H et al. Lutein Supplementation for Eye Diseases. Nutrients. 2020; 12(6): 1721.
11. Renzi LM, Hammond BR Jr, Dengler M et al. The relation between serum lipids and lutein and zeaxanthin in the serum and retina: Results from cross-sectional, case-control and case study designs. Lipids Health Dis. 2012; 11: 33.
12. Li B, George EW, Rognon GT et al. Imaging lutein and zeaxanthin in the human retina with confocal resonance Raman microscopy. Proc Natl Acad Sci USA. 2020; 117: 12352-8.
13. Li SY, Fu ZJ, Lo AC. Hypoxia-induced oxidative stress in ischemic retinopathy. Oxid Med Cell Longev. 2012; 2012: 426769.
14. Junghans A, Sies H, Stahl W. Macular pigments lutein and zeaxanthin as blue light filters studied in liposomes. Arch Biochem Biophys. 2001; 391: 160-4.
15. Krinsky NI, Landrum JT, Bone RA. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Ann Rev Nutr. 2003; 23: 171-201.
16. Kijlstra A, Tian Y, Kelly ER et al. Lutein: More than just a filter for blue light. Prog Retin Eye Res. 2012; 31: 303-15.
17. Tian Y, Kijlstra A, Webers CAB et al. Lutein and Factor D: Two intriguing players in the field of age-related macular degeneration. Arch Biochem Biophys. 2015; 572: 49-53.
18. Bian Q, Gao S, Zhou J et al. Lutein and zeaxanthin supplementation reduces photooxidative damage and modulates the expression of inflammation-related genes in retinal pigment epithelial cells. Free Radic Biol Med. 2012; 53: 1298-307.
19. Fung FK, Law BY, Lo AC. Lutein Attenuates Both Apoptosis and Autophagy upon Cobalt (II) Chloride-Induced Hypoxia in Rat Muller Cells. PLoS ONE. 2016; 11: e0167828.
20. Gale CR, Hall NF, Phillips DIW et al. Lutein and Zeaxanthin Status and Risk of Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2003; 44: 2461-5.
21. Age-Related Eye Disease Study 2 Research Group. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the age-related eye disease study 2 (AREDS2) randomized clinical trial. JAMA. 2013; 309: 2005-15.
22. Seddon JM, George S, Rosner B. Cigarette Smoking, Fish Consumption, Omega-3 Fatty Acid Intake, and Associations With Age-Related Macular Degeneration The US Twin Study of Age-Related Macular Degeneration. Arch Ophthalmol. 2006; 124(7): 995-1001.
23. Seddon JM, Rosner B, Sperduto RD et al. Dietary fat and risk for advanced age-related macular degeneration. Arch Ophthalmol. 2001; 119: 1191-9.
24. Austin RC, Lentz SR, Werstuck GH. Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ. 2004; 11(suppl 1): S56-64.
25. Christen WG, Glynn RJ, Chew EY et al. Folic acid, pyridoxine, and cyanocobalamin combination treatment and age-related macular degeneration in women: the Women’s Antioxidant and Folic Acid Cardiovascular Study. Arch Intern Med. 2009; 169: 335-41.
26. Gopinath B, Flood VM, Rochtchina E et al. Homocysteine, folate, vitamin B-12, and 10-y incidence of age-related macular degeneration. Am J Clin Nutr. 2013; 98(1): 129-35.
27. Christen WG, Glynn RJ, Chew EY et al. Folic Acid, Vitamin B6, and Vitamin B12 in Combination and Agerelated Macular Degeneration in a Randomized Trial of Women. Arch Intern Med. 2009; 169(4): 335-41.
28. Herbert V, Bigaouette J. Call for endorsement of a petition to the Food and Drug Administration to always add vitamin B-12 to any folate fortification or supplement. Am J Clin Nutr. 1997; 65: 572-3.
29. Smailhodzic D, Van Asten F, Blom A et al. Zinc supplementation inhibits complement activation in age-related macular degeneration. PLoS One. 2014; 9(11): e112682.
30. Dharamdasani Detaram H, Mitchell P, Russell J et al. Dietary zinc intake is associated with macular fluid in neovascular age-related macular degeneration. Clin Exp Ophthalmol. 2020; 48(1): 61-8.
31. Age-Related Eye Disease Study Research Group. A Randomized, Placebo-Controlled, Clinical Trial of High-Dose Supplementation With Vitamins C and E, Beta Carotene, and Zinc for Age-Related Macular Degeneration and Vision Loss: AREDS Report No. 8. Arch Ophthalmol. 2001; 119(10): 1417-36.