Shall intraoperative OCT become standard equipment of modern operating room? Review article

Main Article Content

Dorota Maria Kaczmarek
Radosław Kaczmarek

Abstract

The role of intraoperative OCT (iOCT) in ophthalmic surgery is still a matter of active research and enhancements to integrative technologies. Further research is necessary to better define the specific applications of iOCT that impact surgical decision-making and as such help to achieve better patient outcomes, both in anterior and in posterior segment of the eye. In time to come advancements in integrative systems, OCT-friendly instrumentation, and software algorithms will most likely expand the horizon of iOCT even further.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Kaczmarek DM, Kaczmarek R. Shall intraoperative OCT become standard equipment of modern operating room?. Ophthatherapy [Internet]. 2023Sep.30 [cited 2024Nov.22];10(3):173-7. Available from: https://journalsmededu.pl/index.php/ophthatherapy/article/view/2862
Section
Diagnostics

References

1. Ehlers JP, Dupps WJ, Kaiser PK et al. The prospective intraoperative and perioperative ophthalmic imaging with optical CoherEncE TomogRaphy (PIONEER) study: 2-year results. Am J Ophthalmol. 2014; 158(5): 999-1007. http://doi.org/10.1016/j.ajo.2014.07.034.
2. Geerling G. Intraoperative 2-Dimensional Optical Coherence Tomography as a New Tool for Anterior Segment Surgery. Arch Ophthalmol. 2005; 123(2): 253. http://doi.org/10.1001/archopht.123.2.253.
3. Dayani PN, Maldonado R, Farsiu S et al. Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery. Retina. 2009; 29(10): 1457-68. http://doi.org/10.1097/IAE.0b013e3181b266bc.
4. Carrasco-Zevallos OM, Viehland Ch, Keller B et al. Review of intraoperative optical coherence tomography: technology and applications [Invited]. Biomed Opt Express. 2017; 8(3): 1607. http://doi.org/10.1364/boe.8.001607.
5. Lauer A, Vasconcelos H. Intraoperative OCT: an emerging technology. Eyenet Magazine. 2018; 31-3.
6. Gandorfer A, Haritoglou C, Kampik A. Toxicity of indocyanine green in vitreoretinal surgery. Dev Ophthalmol. 2008; 42: 69-81. http://doi.org/10.1159/000138974.
7. Ehlers JP, Modi YS, Pecen PE et al. The DISCOVER Study 3-Year Results: Feasibility and Usefulness of Microscope-Integrated Intraoperative OCT during Ophthalmic Surgery. Ophthalmology. 2018; 125(7): 1014-27. http://doi.org/10.1016/J.OPHTHA.2017.12.037.
8. Gao J, Hussain RM, Weng CY. Voretigene neparvovec in retinal diseases: A review of the current clinical evidence. Clin Ophthalmol. 2020; 14: 3855-69. http://doi.org/10.2147/OPTH.S231804.
9. Ehlers JP. Intraoperative optical coherence tomography: Past, present, and future. Eye (Basingstoke). 2016; 30(2): 193-201. http://doi.org/10.1038/eye.2015.255.
10. Ehlers JP, Uchida A, Srivastava SK et al. Predictive model for macular hole closure speed: Insights from intraoperative optical coherence tomography. Transl Vis Sci Technol. 2019; 8(1): 18. http://doi.org/10.1167/tvst.8.1.18.
11. Patel AS, Goshe JM, Srivastava SK et al. Intraoperative Optical Coherence Tomography-Assisted Descemet Membrane Endothelial Keratoplasty in the DISCOVER Study: First 100 Cases. Am J Ophthalmol. 2020; 210: 167-173. http://doi.org/10.1016/j.ajo.2019.09.018.
12. Khan M, Srivastava SK, Reese JL et al. Intraoperative OCT-assisted Surgery for Proliferative Diabetic Retinopathy in the DISCOVER Study. Ophthalmol Retina. 2018; 2(5): 411-7. http://doi.org/10.1016/j.oret.2017.08.020.
13.Ehlers JP, Srivastava SK, Feiler D et al. Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: Microscope integration, surgical instrumentation, and heads-up display surgeon feedback. PLoS One. 2014; 9(8): e105224. http://doi.org/10.1371/journal.pone.0105224.