Eye and SARS-CoV-2 in 2022 Review article

Main Article Content

Andrzej Grzybowski

Abstract

The ocular symptoms of COVID-19 are rare, however, the most common is conjunctivitis. Retinal changes, including dilated veins, tortuous blood vessels, intraretinal hemorrhages, and cotton balls are much less common. In addition, there may be swelling of the eyelids, their irritation, most often in combination with conjunctival hyperemia. Moreover, COVID-19 infection may be accompanied by different neuro-ophthalmic disorders and, in rare cases, by mucormycosis. Various ocular complications have been reported following vaccination against COVID-19, including facial nerve palsy, abduction nerve palsy, acute macular neuro-retinopathy, superior ocular vein thrombosis, corneal transplant rejection, membrane inflammation vascular eye disease, central serous chorioretinopathy, reactivation of Vogt-Koyanagi-Harada disease and onset of Graves’ disease. Chemical eye injuries in children caused by hand sanitizers have also been reported. Although numerous studies have confirmed the antiviral activity of benzalkonium chloride, its role in this regard requires further research.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Grzybowski A. Eye and SARS-CoV-2 in 2022. Ophthatherapy [Internet]. 2021Dec.20 [cited 2025Jan.22];8(4):284-91. Available from: https://journalsmededu.pl/index.php/ophthatherapy/article/view/1730
Section
Covid – special report

References

1. Jevnikar K, Jaki Mekjavic P, Vidovic Valentincic N et al. An Update on COVID-19 Related Ophthalmic Manifestations. Ocul Immunol Inflamm. 2021; 29(4): 684-9. http://doi.org/10.1080/09273948.2021.1896008.
2. Zhong Y, Wang K, Zhu Y et al. Ocular manifestations in COVID-19 patients: A systematic review and meta-analysis. Travel Med Infect Dis. 2021; 44: 102191. http://doi.org/10.1016/j.tmaid.2021.102191.
3. Deng W, Bao L, Gao H et al. Ocular conjunctival inoculation of SARS-CoV-2 can cause mild COVID-19 in rhesus macaques. Nat Commun. 2020; 11(1): 4400. http://doi.org/10.1038/s41467-020-18149-6.
4. Seah IYJ, Anderson DE, Kang AEZ et al. Assessing Viral Shedding and Infectivity of Tears in Coronavirus Disease 2019 (COVID-19) Patients. Ophthalmology. 2020; 127(7): 977-9. http://doi.org/10.1016/j.ophtha.2020.03.026.
5. Szczęśniak M, Brydak-Godowska J. SARS-CoV-2 and the Eyes: A Review of the Literature on Transmission, Detection, and Ocular Manifestations. Med Sci Monit. 2021; 27: e931863. http://doi.org/10.12659/msm.931863.
6. Leonardi A, Rosani U, Brun P. Ocular Surface Expression of SARS-CoV-2 Receptors. Ocul Immunol Inflamm. 2020; 28(5): 735-8. http://doi.org/10.1080/09273948.2020.1772314.
7. Chen YY, Yen YF, Huang LY et al. Manifestations and Virus Detection in the Ocular Surface of Adult COVID-19 Patients: A Meta-Analysis. J Ophthalmol. 2021; 2021: 9997631. http://doi.org/10.1155/2021/9997631.
8. Almazroa A, Alamri S, Alabdulkader B et al. Ocular transmission and manifestation for coronavirus disease: a systematic review. Int Health. 2021. http://doi.org/10.1093/inthealth/ihab028.
9. American Academy of Ophthalmology. Important coronavirus updates for ophthalmologists. (access: 17.01.2022).
10. Jin YP, Trope GE, El-Defrawy S et al. Ophthalmology-focused publications and findings on COVID-19: A systematic review. Eur J Ophthalmol. 2021; 31(4): 1677-87. http://doi.org/10.1177/1120672121992949.
11. Nasiri N, Sharifi H, Bazrafshan A et al. Ocular Manifestations of COVID-19: A Systematic Review and Meta-analysis. J Ophthalmic Vis Res. 2021; 16(1): 103-12. http://doi.org/10.18502/jovr.v16i1.8256.
12. Ulhaq ZS, Soraya GV. The prevalence of ophthalmic manifestations in COVID-19 and the diagnostic value of ocular tissue/fluid. Graefes Arch Clin Exp Ophthalmol. 2020; 258(6): 1351-2. http://doi.org/10.1007/s00417-020-04695-8.
13. Aggarwal K, Agarwal A, Jaiswal N et al. Ocular surface manifestations of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. PLoS One. 2020; 15(11): e0241661. http://doi.org/10.1371/journal.pone.0241661.
14. Wu P, Duan F, Luo C et al. Characteristics of Ocular Findings of Patients With Coronavirus Disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol. 2020; 138(5): 575-8. http://doi.org/10.1001/jamaophthalmol.2020.1291.
15. Ma N, Li P, Wang X et al. Ocular Manifestations and Clinical Characteristics of Children With Laboratory-Confirmed COVID-19 in Wuhan, China. JAMA Ophthalmol. 2020; 138(10): 1079-86. http://doi.org/10.1001/jamaophthalmol.2020.3690.
16. Wu P, Liang L, Chen C et al. A child confirmed COVID-19 with only symptoms of conjunctivitis and eyelid dermatitis. Graefes Arch Clin Exp Ophthalmol. 2020; 258(7): 1565-6. http://doi.org/10.1007/s00417-020-04708-6.
17. Wang JG, Zhong ZJ, Li M et al. Coronavirus Disease 2019-Related Multisystem Inflammatory Syndrome in Children: A Systematic Review and Meta-Analysis. Biochem Res Int. 2021; 2021: 5596727. http://doi.org/10.1155/2021/5596727.
18. Daruich A, Martin D, Bremond-Gignac D. Ocular manifestation as first sign of Coronavirus Disease 2019 (COVID-19): Interest of telemedicine during the pandemic context. J Fr Ophtalmol. 2020; 43(5): 389-91. http://doi.org/10.1016/j.jfo.2020.04.002.
19. Azari AA, Barney NP. Conjunctivitis: a systematic review of diagnosis and treatment. Jama . 2013; 310(16): 1721-9. http://doi.org/10.1001/jama.2013.280318.
20. Sindhuja K, Lomi N, Asif MI et al. Clinical profile and prevalence of conjunctivitis in mild COVID-19 patients in a tertiary care COVID-19 hospital: A retrospective cross-sectional study. Indian J Ophthalmol. 2020; 68(8): 1546-50. http://doi.org/10.4103/ijo.IJO_1319_20.
21. Invernizzi A, Torre A, Parrulli S et al. Retinal findings in patients with COVID-19: Results from the SERPICO-19 study. EClinicalMedicine. 2020; 27: 100550. http://doi.org/10.1016/j.eclinm.2020.100550.
22. Insausti-García A, Reche-Sainz JA, Ruiz-Arranz C et al. Papillophlebitis in a COVID-19 patient: inflammation and hypercoagulable state. Eur J Ophthalmol. 2020: 1120672120947591. http://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104982.
23. Gascon P, Briantais A, Bertrand E et al. Covid-19-associated retinopathy: a case report. Ocul Immunol Inflamm. 2020; 28(8): 1293-7.
24. Benito-Pascual B, Gegúndez JA, Díaz-Valle D et al. Panuveitis and optic neuritis as a possible initial presentation of the novel coronavirus disease 2019 (COVID-19). Ocul Immunol Inflammation. 2020; 28(6): 922-5.
25. Acharya S, Diamond M, Anwar S et al. Unique case of central retinal artery occlusion secondary to COVID-19 disease. IDCases. 2020; 21:e00867.
26. Dumitrascu OM, Volod O, Bose S et al. Acute ophthalmic artery occlusion in a COVID-19 patient on apixaban. J Stroke Cerebrovasc Dis. 2020; 29(8): 104982. http://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104982.
27. Sheth JU, Narayanan R, Goyal J et al. Retinal vein occlusion in COVID-19: A novel entity. Indian J Ophthalmol. 2020; 68(10): 2291-3. http:// doi.org/10.4103/ijo.IJO_2380_20.
28. Bostanci Ceran B, Ozates S. Ocular manifestations of coronavirus disease 2019. Graefes Arch Clin Exp Ophthalmol. 2020; 258(9): 1959-63. http://doi.org/10.1007/s00417-020-04777-7.
29. Méndez Mangana C, Barraquer Kargacin A, Barraquer RI. Episcleritis as an ocular manifestation in a patient with COVID-19. Acta Ophthalmol. 2020; 98(8): e1056-e7. http://doi.org/10.1111/aos.14484.
30. Otaif W, Al Somali AI, Al Habash A. Episcleritis as a possible presenting sign of the novel coronavirus disease: A case report. Am J Ophthalmol Case Rep. 2020; 20: 100917. http://doi.org/10.1016/j.ajoc.2020.100917.
31. Iriqat S, Yousef Q, Ereqat S. Clinical Profile of COVID-19 Patients Presenting with Uveitis – A Short Case Series. Int Med Case Rep J. 2021; 14: 421-7. http://doi.org/10.2147/imcrj.S312461.
32. Ortiz-Seller A, Martínez Costa L, Hernández-Pons A et al. Ophthalmic and Neuro-ophthalmic Manifestations of Coronavirus Disease 2019 (COVID-19). Ocul Immunol Inflamm. 2020; 28(8): 1285-9.
33. Zhou S, Jones-Lopez EC, Soneji DJ et al. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Optic Neuritis and Myelitis in COVID-19. J Neuroophthalmol. 2020; 40(3): 398-402. http://doi.org/10.1097/wno.0000000000001049.
34. Manolopoulos A, Katsoulas G, Kintos V et al. Isolated Abducens Nerve Palsy in a Patient With COVID-19: A Case Report and Literature Review. Neurologist. 2021. http://doi.org/10.1097/nrl.0000000000000382.
35. Francis JE. Abducens Palsy and Anosmia Associated with COVID-19: A Case Report. Br Ir Orthopt J. 2021; 17(1): 8-12. http://doi.org/10.22599/bioj.167.
36. Dinkin M, Gao V, Kahan J et al. COVID-19 presenting with ophthalmoparesis from cranial nerve palsy. Neurology. 2020; 95(5): 221-3. http://doi.org/10.1212/wnl.0000000000009700.
37. Greer CE, Bhatt JM, Oliveira CA et al. Isolated Cranial Nerve 6 Palsy in 6 Patients With COVID-19 Infection. J Neuroophthalmol. 2020; 40(4): 520-2.
38. Zhao H, Shen D, Zhou H et al. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol. 2020; (5): 383-4. http://doi.org/10.1016/s1474-4422(20)30109-5.
39. Caress JB, Castoro RJ, Simmons Z et al. COVID-19-associated Guillain-Barré syndrome: The early pandemic experience. Muscle Nerve. 2020; 62(4): 485-91. http://doi.org/10.1002/mus.27024.
40. Gutiérrez-Ortiz C, Méndez-Guerrero A, Rodrigo-Rey S et al. Miller Fisher syndrome and polyneuritis cranialis in COVID-19. Neurology. 2020; 95(5): e601-e5. http://doi.org/10.1212/wnl.0000000000009619.
41. Reyes-Bueno JA, García-Trujillo L, Urbaneja P et al. Miller-Fisher syndrome after SARS-CoV-2 infection. Eur J Neurol. 2020; 27(9): 1759-61. http://doi.org/10.1111/ene.14383.
42. Sundaram N, Bhende T, Yashwant R et al. Mucormycosis in COVID-19 patients. Indian J Ophthalmol. 2021; 69(12): 3728-33.
43. Fathima AS, Mounika VL, Kumar VU et al. Mucormycosis: A triple burden in patients with diabetes during COVID-19 Pandemic. Health Sci Rev (Oxf). 2021; 1: 100005. http://doi.org/10.1016/j.hsr.2021.100005.
44. Bhattacharyya A, Sarma P, Kaur H et al. COVID-19-associated rhino-orbital-cerebral mucormycosis: A systematic review, meta-analysis, and meta-regression analysis. Systematic Review and Meta Analysis. Indian J Pharmacol. 2021; 53(6): 499-510. http://doi.org/10.4103/ijp.ijp_839_21.
45. Sen M, Honavar SG, Sharma N et al. COVID-19 and Eye: A Review of Ophthalmic Manifestations of COVID-19. Indian J Ophthalmol. 2021; 69(3): 488-509. http://doi.org/10.4103/ijo.IJO_297_21.
46. Ng XL, Betzler BK, Testi I et al. Ocular Adverse Events After COVID-19 Vaccination. Ocul Immunol Inflamm. 2021; 24: 1-9. http://doi.org/10.1080/09273948.2021.1976221.
47. Bolletta E, Iannetta D, Mastrofilippo V et al. Uveitis and Other Ocular Complications Following COVID-19 Vaccination. J Clin Med. 2021; 10(24): 5960.
48. https://ourworldindata.org/covid-vaccinations .
49. Martin GC, Le Roux G, Guindolet D et al. Pediatric Eye Injuries by Hydroalcoholic Gel in the Context of the Coronavirus Disease 2019 Pandemic. JAMA Ophthalmol. 2021; 139(3): 348-51.
50. Yangzes S, Grewal S, Gailson T et al. Hand Sanitizer–Induced Ocular Injury: A COVID-19 Hazard in Children. JAMA Ophthalmol. 2021; 139(3): 362-4. http://doi.org/10.1001/jamaophthalmol.2020.6351.
51. Merchel Piovesan Pereira B, Tagkopoulos I. Benzalkonium Chlorides: Uses, Regulatory Status, and Microbial Resistance. Appl Environ Microbiol. 2019; 85(13): e00377-19.
52. Hand Hygiene Recommendations. Guidance for Healthcare Providers about Hand Hygiene and COVID-19 (access: 12.09.2021).
53. Schrank CL, Minbiole KPC, Wuest WM. Are Quaternary Ammonium Compounds, the Workhorse Disinfectants, Effective against Severe Acute Respiratory Syndrome-Coronavirus-2? ACS Infect Dis. 2020; 6(7): 1553-7.
54. Meister TL, Brüggemann Y, Todt D et al. Virucidal Efficacy of Different Oral Rinses Against Severe Acute Respiratory Syndrome Coronavirus 2. J Infect Dis. 2020; 222(8): 1289-92.
55. Rabenau HF, Kampf G, Cinatl J et al. Efficacy of various disinfectants against SARS coronavirus. J Hosp Infect. 2005; 61(2): 107-11.
56. Kampf G, Todt D, Pfaender S et al. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020; 104(3): 246-51.
57. Ogilvie BH, Solis-Leal A, Lopez JB et al. Alcohol-free hand sanitizer and other quaternary ammonium disinfectants quickly and effectively inactivate SARS-CoV-2. J Hosp Infect. 2021; 108: 142-5.
58. Pedreira A, Taşkın Y, García MR. A Critical Review of Disinfection Processes to Control SARS-CoV-2 Transmission in the Food Industry. Foods. 2021; 10(2): 283.
59. Hirose R, Bandou R, Ikegaya H et al. Disinfectant effectiveness against SARS-CoV-2 and influenza viruses present on human skin: model- based evaluation. Clin Microbiol Infect. 2021; 27(7): 1042.e1-1042.e4.