Zastosowanie nieinwazyjnych i inwazyjnych metod diagnostycznych do oceny skuteczności trzech preparatów sztucznych łez w leczeniu zespołu suchego oka
##plugins.themes.bootstrap3.article.main##
Abstrakt
Cel: Ocena skuteczności 3 powszechnie stosowanych preparatów sztucznych łez u pacjentów z objawami zespołu suchego oka.
Materiał i metody: W 4-tygodniowym badaniu uczestniczyło 30 osób z objawami suchego oka. Badani w schemacie 1 : 1 : 1 otrzymywali: grupa 1. – dekspantenol 2% i hydroksypropylocelulozę 0,5%; grupa 2. – trehalozę 3% i hialuronian sodu 0,15%; grupa 3. – hialuronian sodu 0,24%. Badania wykonano przed rozpoczęciem leczenia i po 28 dniach. Zastosowano kwestionariusz OSDI wskaźnika choroby powierzchni oka, ocenę objawów subiektywnych, nieinwazyjne obrazowe badania diagnostyczne 2 wideokeratoskopami z dużą i małą czaszą projekcyjną, test Schirmera oraz badania w lampie szczelinowej z barwieniem fluoresceiną i zielenią lizaminy. W analizie statystycznej użyto testu t-Studenta dla prób zależnych.
Wyniki: Wszystkie preparaty doprowadziły do poprawy OSDI. W grupie 1. redukcji uległy cztery, a w grupach 2. i 3. – dwa subiektywne objawy suchego oka (p < 0,05). Nieinwazyjny czas przerwania filmu łzowego (NIBUT) był znacząco dłuższy w grupach 1. i 3. (p < 0,05) jedynie w pomiarach wideokeratoskopem z małą czaszą. Tempo postępującego pogarszania się jakości powierzchni filmu łzowego po mrugnięciu uległo spowolnieniu tylko w grupie 1. (p < 0,05). Stopień barwienia rogówki fluoresceiną zmniejszył się we wszystkich grupach (p < 0,05). Nie zaobserwowano istotnych zmian w teście Schirmera, wysokości menisku łzowego i w NIBUT mierzonym wideokeratoskopem z dużą czaszą.
Wnioski: Badane preparaty zmniejszyły subiektywne i obiektywne objawy zespołu suchego oka. Znacząco polepszyły komfort pacjenta i stan nabłonka rogówki. Poprawa stabilności filmu łzowego zależała od rodzaju kropli i metody badawczej.
Pobrania
##plugins.themes.bootstrap3.article.details##
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.
Copyright: © Medical Education sp. z o.o. License allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Address reprint requests to: Medical Education, Marcin Kuźma (marcin.kuzma@mededu.pl)
Bibliografia
2. Gulati S, Jain S. Ocular pharmacology of tear film, dry eye, and allergic conjunctivitis. Handb Exp Pharmacol. 2017; 242: 97-118.
3. Nakamura M, Hikida M, Nakano T et al. Characterization of water retentive properties of hyaluronan. Cornea. 1993; 12: 433-6.
4. Gomes JA, Amankwah R, Powell-Richards A et al. Sodium hyaluronate (hyaluronic acid) promotes migration of human corneal epithelial cells in vitro. Br J Ophthalmol. 2004; 88: 821-5.
5. Cejka C, Kubinova S, Cejkova J. Trehalose in ophthalmology. Histol Histopathol. 2019; 34(6): 611-18.
6. Chen W, Zhang X, Liu M et al. Trehalose protects against ocular surface disorders in experimental murine dry eye through suppression of apoptosis. Exp Eye Res. 2009; 89: 311-8.
7. Raczyńska K, Iwaszkiewicz-Bilikiewicz B, Stozkowska W et al. Clinical evaluation of provitamin B5 drops and gel for postoperative treatment of corneal and conjuctival injuries. Klin Oczna. 2003; 105: 175-8.
8. Lee R, Yeo S, Tun Aung H et al. A greement of noninvasive tear break-up time measurement between Tomey RT-7000 Auto Refractor-Keratometer and Oculus Keratograph 5M. Clin Ophthalmol. 2016; 10: 1785-90.
9. Best N, Drury L, Wolffsohn JS. Clinical evaluation of the Oculus Keratograph. Contact Lens Anterior Eye. 2012; 35: 171-4.
10. Fuller DG, Potts K, Kim J. Noninvasive tear breakup times and ocular surface disease. Optom Vis Sci. 2013; 90: 1086-91.
11. Schiffman RM, Christianson MD, Jacobsen G et al. Reliability and validity of the Ocular Surface Disease Index. Arch Ophthalmol. 2000; 118: 615-21.
12. Whitcher JP, Shiboski CH, Shiboski SC et al. A simplified quantitative method for assessing keratoconjunctivitis sicca from the Sjogren’s Syndrome International Registry. Am J Ophthalmol. 2010; 149: 405-15.
13. Szczesna-Iskander DH, Alonso-Caneiro D, Iskander DR. Objective Measures of Pre-lens Tear Film Dynamics versus Visual Responses. Optom Vis Sci. 2016; 93: 872-880.
14. Owsley C, Knoblauch K, Katholi C. When does visual aging begin? Invest Ophthalmol Visual Sci. 1992; 33: 1414.
15. Armstrong RA. When to use the Bonferroni correction. Ophthalmic Physiol Opt. 2014; 34: 502-8.
16. Maharana PK, Raghuwanshi S, Chauhan AK et al. Comparison of the Efficacy of Carboxymethylcellulose 0.5%, Hydroxypropylguar Containing Polyethylene Glycol 400/Propylene Glycol, and Hydroxypropyl Methyl Cellulose 0.3% Tear Substitutes in Improving Ocular Surface Disease Index in Cases of Dry Eye. Middle East Afr J Ophthalmol. 2017; 24: 202-6.
17. Safarzadeh M, Azizzadeh P, Akbarshahi P. Comparison of the clinical efficacy of preserved and preservative-free hydroxypropyl methylcellulose-dextran-containing eyedrops. J Optom. 2017; 10: 258-64.
18. Moshirfar M, Pierson K, Hanamaikai K et al. Artificial tears potpourri: a literature review. Clin Ophthalmol. 2014; 8: 1419-33.
19. Proksch E, de Bony R, Trapp S et al. Topical use of dexpanthenol: a 70th anniversary article. J Derm Treat. 2017; 28: 1-8.
20. Matsuo T. Trehalose protects corneal epithelial cells from death by drying. Br J Ophthalmol. 2001; 85: 610-2.
21. Aragona P, Colosi P, Rania L et al. Protective Effects of Trehalose on the Corneal Epithelial Cells. ScientificWorldJournal. 2014: 717835.
22. Li J, Roubeix C, Wang Y et al. Therapeutic efficacy of trehalose eye drops for treatment of murine dry eye induced by an intelligently controlled environmental system. Mol Vis. 2012; 18: 317-29.
23. Čejková J, Ardan T, Čejka C et al. Favorable effects of trehalose on the development of UVB-mediated antioxidant/pro-oxidant imbalance in the corneal epithelium, proinflammatory cytokine and matrix metalloproteinase induction, and heat shock protein 70 expression. Graefes Arch Clin Exp Ophthalmol. 2011; 249: 1185-94.
24. Salzillo R, Schiraldi C, Corsuto L et al. Optimization of hyaluronan-based eye drop formulations. Carbohydrate Polymers. 2016; 153: 275-83.
25. Weigel PH, Baggenstoss BA. What is special about 200 kDa hyaluronan that activates hyaluronan receptor signaling? Glycobiology. 2017; 27: 868-77.
26. Oh T, Jung Y, Chang D et al. Changes in the tear film and ocular surface after cataract surgery. Jpn J Ophthalmol. 2012; 56: 113-8.
27. Kohli P, Arya SK, Raj A et al. Changes in ocular surface status after phacoemulsification in patients with senile cataract. Int Ophthalmol. 2018; 39: 1-9.
28. Sullivan BD, Whitmer D, Nichols KK et al. Tear film osmolarity: determination of a referent for dry eye diagnosis. Invest Ophthalmol Vis Sci. 2010; 47: 4309-15.
29. Nichols KK, Mitchell GL, Zadnik K. The repeatability of clinical measurementsof dry eye. Cornea. 2004; 23: 272-85.
30. Wolffsohn JS, Arita R, Chalmers R et al. TFOS DEWS II Diagnostic Methodology report. Ocul Surf. 2017; 15: 539-74.
31. Li N, Deng XG, He MF. Comparison of the Schirmer 1 test with and without topical anesthesia for diagnosing dry eye. Int J Opthalmol. 2012; 5: 478-81.
32. Downie LE. Automated tear film surface quality breakup time as a novel clinical marker for tear hyperosmolarity in dry eye disease. Invest Ophthalmol Vis Sci. 2015; 56: 7260-8.
33. Lan W, Lin L, Yang X et al. Automatic noninvasive tear breakup time (TBUT) and conventional fluorescent TBUT. Optom Vis Sci. 2014; 91: 1412-8.
34. Llorens-Quintana C, Szczesna-Iskander DH, Iskander DR. Unified approach to tear film surface analysis with high-speed videokeratoscopy. J Opt Soc Am A. 2019; 36: B15-22.
35. Wang M, Murthy PJ, Blades KJ et al. Comparison of non-invasive tear film stability measurement techniques. Clin Exp Optom. 2017; 101: 13-7.
36. Szczesna-Iskander DH. Post-blink tear film dynamics in healthy and dry eyes during spontaneous blinking. Ocular Surf. 2018; 16: 93-100.
37. Yokoi N, Georgiev GA. Tear film-oriented diagnosis and tear film-oriented therapy for dry eye based on tear film dynamics. Invest Ophthalmol Vis Sci. 2018; 59: DES13–2.
38. Abdelfattah NS, Dastiridou A, Sadda SV et al. Noninvasive imaging of tear film dynamics in eyes with ocular surface disease. Cornea. 2015; 34(10): S48-52.