Zwyrodnienie plamki związane z wiekiem. Część II: metody leczenia – chirurgiczne, monoterapia i terapie złożone

##plugins.themes.bootstrap3.article.main##

Adam Jarmak

Abstrakt

Zwyrodnienie plamki związane z wiekiem jest najczęstszą przyczyną utraty widzenia centralnego. Proces chorobowy obejmuje region plamkowy siatkówki i prowadzi do znacznego pogorszenia ostrości wzroku, a co za tym idzie – jakości życia. Chory traci możliwość uprawiania dotychczas wykonywanego zawodu, czytania, oglądania telewizji czy prowadzenia samochodu. Schorzenie to jest wyraźnie związane z procesami starzenia się i degeneracji tkanek i zazwyczaj pojawia się po 50. r.ż. Dopiero kilka lat temu wprowadzono środki farmakologiczne i inne metody terapeutyczne, które zdecydowanie poprawiły szanse na zachowanie użytecznej ostrości wzroku. Przełomowym odkryciem było klinicznie potwierdzone zahamowanie endotelialnego czynnika wzrostu, powodującego neowaskularyzację, co skutkowało brakiem wzrostu nieprawidłowych naczyń i w efekcie chroniło nie tylko przed spadkiem ostrości wzroku, ale nawet tę funkcję poprawiało. To była prawdziwa rewolucja w okulistyce, która dała pacjentom nadzieję na całkowite wyleczenie. Jednak czy jest ono możliwe? Jak wskazują doświadczenia kliniczne i doniesienia badaczy, walka o zahamowanie rozwoju choroby trwa. Leczenie chirurgiczne, leki podawane miejscowo i ogólnie, plazmafereza, wirusy wektorowe, radioterapia to tylko niektóre sposoby w walce o zachowanie widzenia centralnego. Arsenał terapeutyczny stale i intensywnie się poszerza i daje nadzieję na powstrzymanie rozwoju schorzenia.

Pobrania

Dane pobrania nie są jeszcze dostepne

##plugins.themes.bootstrap3.article.details##

Jak cytować
1.
Jarmak A. Zwyrodnienie plamki związane z wiekiem. Część II: metody leczenia – chirurgiczne, monoterapia i terapie złożone. Ophthatherapy [Internet]. 31 marzec 2015 [cytowane 22 listopad 2024];2(1):31-5. Dostępne na: https://journalsmededu.pl/index.php/ophthatherapy/article/view/615
Dział
Artykuły

Bibliografia

1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971; 285: 1182-6.
2. Senger DR, Galli SJ, Dvorak AM et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983; 219: 983-5.
3. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989; 161: 851-8.
4. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003; 9(6): 669-76.
5. Houck KA, Ferrara N, Winer J et al. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol. 1991; 5: 1806-14.
6. Olsson AK, Dimberg A, Kreuger J et al. VEGF receptor signalling – in control of vascular function. Nat Rev Mol Cell Biol. 2006; 7(5): 359-71.
7. Sheikpranbabu S, Kalishwaralal K, Venkataraman D et al. Silver nanoparticles inhibit VEGF- and IL-1beta-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cells. J Nanobiotechnology. 2009; 7: 8.
8. Allen WR, Gower S, Wilsher S. Immunohistochemical localization of vascular endothelial growth factor (VEGF) and its two receptors (Flt-I and KDR) in the endometrium and placenta of the mare during the oestrous cycle and pregnancy. Reprod Domest Anim. 2007; 42(5): 516-26.
9. Witmer AN, Vrensen GF, Van Noorden CJ et al. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res. 2003; 22(1): 1-29.
10. Hiroshima K, Ng YS, Zhong L et al. Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol. 2007; 171(1): 53-67.
11. Ablonczy Z, Crosson CE. VEGF modulation of retinal pigment epithelium resistance. Exp Eye Res. 2007; 85(6): 762-71.
12. Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond). 2005; 109(3): 227-41.
13. Slomiany MG, Rosenzweig SA. Autocrine effects of IGF-I-induced VEGF and IGFBP-3 secretion in retinal pigment epithelial cell line ARPE-19. Am J Physiol Cell Physiol. 2004; 287(3): C746-53.
14. Funatsu H, Noma H, Mimura T et al. Association of vitreous inflammatory factors with diabetic macular edema. Ophthalmology. 2009; 116(1): 73-9.
15. Tsai DC, Charng MJ, Lee FL et al. Different plasma levels of vascular endothelial growth factor and nitric oxide between patients with choroidal and retinal neovascularisation. Ophthalmologica. 2006; 220(4): 246-51.
16. Boulton ME, Cai J, Grant MB. Gamma-Secretase: a multifaceted regulator of angiogenesis. J Cell Mol Med. 2008; 12(3): 781-95.
17. Chappelow AV, Kaiser PK. Neovascular age-related macular degeneration: potential therapies. Drugs. 2008; 68(8): 1029-36.
18. Michels S, Schmidt-Erfurth U, Rosenfeld PJ. Promising new treatments for neovascular age-related macular degeneration. Expert Opin Investig Drugs. 2006; 15(7): 779-93.
19. Leung E, Landa G. Update on current and future novel therapies for dry age-related macular degeneration. Expert Rev Clin Pharmacol. 2013; 6(5): 565-79.
20. Steinbrook R. The price of sight – ranibizumab, bevacizumab, and the treatment of macular degeneration. N Engl J Med. 2006; 355(14): 1409-12.
21. Bakri SJ, Snyder MR, Reid JM et al. Pharmacokinetics of intravitreal ranibizumab (Lucentis). Ophthalmology. 2007; 114(12): 2179-82.
22. Gillies MC, Walton RJ, Arnold JJ et al. Comparison of outcomes from a phase 3 study of age-related macular degeneration with a matched, observational cohort. Ophthalmology. 2014; 121(3): 676-81.
23. Kaiser PK, Blodi BA, Shapiro H et al. MARINA Study Group. Angiographic and optical coherence tomographic results of the MARINA study of ranibizumab in neovascular age-related macular degeneration. Ophthalmology. 2007; 114(10): 1868-75.
24. Regillo CD, Brown DM, Abraham P et al. Randomized, double-masked, sham-controlled trial of ranibizumab for neovascular age-related macular degeneration: PIER Study year 1. Am J Ophthalmol. 2008; 145(2): 239-48.
25. Schmidt-Erfurth U, Eldem B, Guymer R et al. Efficacy and safety of monthly versus quarterly ranibizumab treatment in neovascular age-related macular degeneration: the EXCITE study. Ophthalmology. 2011; 118(5): 831-9.
26. Dafer RM, Schneck M, Friberg TR et al. Intravitreal ranibizumab and bevacizumab: a review of risk. Semin Ophthalmol. 2007; 22(3): 201-4.
27. Krzystolik MG, Afshari MA, Adamis AP et al. Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment. Arch Ophthalmol. 2002; 120(3): 338-46.
28. Rosenfeld PJ, Mosfeghi AA, Puliafito CA. Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for neovascular age related macular degeneration. Ophthalmic Surg Lasers Imaging. 2005; 36: 331-5.
29. Teper S, Nowińska A, Lyssek-Boroń A et al. Neovascular form of age-related macular degeneration – current management in Poland and in Europe. Pol Merkur Lekarski. 2014; 37(217): 56-60.
30. Lad EM, Hammill BG, Qualls LG et al. Anti-VEGF treatment patterns for neovascular age-related macular degeneration among medicare beneficiaries. Am J Ophthalmol. 2014; 158(3): 537-43.
31. Schmidt-Erfurth UM, Richard G, Augustin A et al. Guidance for the treatment of neovascular age-related macular degeneration. Acta Ophthalmol Scand. 2007; 85(5): 486-94.
32. Ying GS, Kim BJ, Maguire MG et al. Sustained visual acuity loss in the comparison of age-related macular degeneration treatments trials. CATT Research Group. JAMA Ophthalmol. 2014; 132(8): 915-21.
33. Silva R, Axer-Siegel R, Eldem B et al. SECURE Study Group. The SECURE study: long-term safety of ranibizumab 0.5 mg in neovascular age-related macular degeneration. Ophthalmology. 2013; 120(1): 130-9.
34. Larrivée B, Freitas C, Suchting S et al. Guidance of vascular development: lessons from the nervous system. Circ Res. 2009; 104(4): 428-41.
35. Tamura H, Miyamoto K, Kiryu J et al. Intravitreal injection of corticosteroid attenuates leukostasis and vascular leakage in experimental diabetic retina. Invest Ophthalmol Vis Sci. 2005; 46(4): 1440-4.
36. Jonas JB, Hayler JK, Panda-Jonas S. Intravitreal injection of crystalline cortisone as adjunctive treatment of proliferative vitreoretinopathy. Br J Ophthalmol. 2000; 84(9): 1064-7.
37. Sivaprasad S, Patra S, DaCosta J et al. A pilot study on the combination treatment of reduced-fluence photodynamic therapy, intravitreal ranibizumab, intravitreal dexamethasone and oral minocycline for neovascular age-related macular degeneration. Ophthalmologica. 2011; 225(4): 200-6.
38. Si JK, Tang K, Bi HS et al. Combination of ranibizumab with photodynamic therapy vs ranibizumab monotherapy in the treatment of age-related macular degeneration: a systematic review and meta-analysis of randomized controlled trials. Int J Ophthalmol. 2014; 7(3): 541-9.
39. Ranchod TM, Ray SK, Daniels SA et al. LuceDex: a prospective study comparing ranibizumab plus dexamethasone combination therapy versus ranibizumab monotherapy for neovascular age-related macular degeneration. Retina. 2013; 33(8): 1600-4.
40. Augustin AJ, Puls S, Offermann I. Triple therapy for choroidal neovascularization due to age-related macular degeneration: verteporfin PDT, bevacizumab, and dexamethasone. Retina. 2007; 27(2): 133-40.
41. Söderberg AC, Algvere PV, Hengstler JC et al. Combination therapy with low-dose transpupillary thermotherapy and intravitreal ranibizumab for neovascular age related macular degeneration: a 24-month prospective randomized clinical study. Br J Ophthalmol. 2012; 96(5): 714-8.
42. Koch F, Scholtz S, Singh P et al. Kombinierte intravitreale Therapie zur Behandlung der altersbedingten Makuladegeneration. Klin Monbl Augenheilkd. 2008; 225(12): 1003-8.
43. de Oliveira Dias JR, Rodrigues EB, Maia M. Cytokines in neovascular age-related macular degeneration: fundamentals of targeted combination therapy. Br J Ophthalmol. 2011; 95(12): 1631-7.
44. Zehetner C, Kirchmair R, Neururer SB et al. Systemic upregulation of PDGF-B in patients with neovascular AMD. Invest Ophthalmol Vis Sci. 2014; 55(1): 337-44.
45. Shibuya M. Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis. 2006; 9(4): 225-30.
46. Diago T, Pulido JS, Molina JR et al. Ranibizumab combined with low-dose sorafenib for exudative age-related macular degeneration. Mayo Clin Proc. 2008; 83(2): 231-4.
47. Fischer T. A new possible strategy for prevention and preventive treatment of age-related macular degeneration resting on recent clinical and pathophysiological observations. Orv Hetil. 2009; 150(11): 503-12.
48. Geltzer A, Turalba A, Vedula SS. Surgical implantation of steroids with antiangiogenic characteristics for treating neovascular age-related macular degeneration. Cochrane Database Syst Rev. 2013 Jan 1: CD005022.
49. Joussen AM, Kirchhof B. Surgery for age-related macular degeneration. Still an option in the age of pharmacotherapy? Klin Monbl Augenheilkd. 2014; 231(9): 874-82.
50. Machemer R, Steinhorst UH. Retinal separation, retinotomy, and macular relocation: I. Experimental studies in the rabbit eye. Graefes Arch Clin Exp Ophthalmol. 1993; 231(11): 629-34.
51. Machemer R. Macular translocation. Am J Ophthalmol. 1998; 125(5): 698-700.
52. Aisenbrey S, Bartz-Schmidt KU, Walter P et al. Long-term follow-up of macular translocation with 360 degrees retinotomy for exudative age-related macular degeneration. Arch Ophthalmol. 2007; 125(10): 1367-72.
53. Charles S, Calzada J, Wood B. Submacular surgery and macular translocation. In: Charles S, Calzada J, Wood B (ed). Vitreous microsurgery. Fourth Edition. Lippincott Williams & Wilkins, Philadelphia 2007; 14: 163-71.
54. Mruthyunjaya P, Stinnett SS, Toth CA. Change in visual function after macular translocation with 360 degrees retinectomy for neovascular age-related macular degeneration. Ophthalmology. 2004; 111(9): 1715-24.
55. Uppal G, Milliken A, Lee J et al. New algorithm for assessing patient suitability for macular translocation surgery. Clin Experiment Ophthalmol .2007; 35(5): 448-57.
56. Aisenbrey S, Lafaut BA, Szurman P et al. Macular translocation with 360 degrees retinotomy for exudative age-related macular degeneration. Arch Ophthalmol. 2002; 120(4): 451-9.
57. Pieramici DJ, de Juan E Jr, Fujii GY et al. Limited inferior macular translocation for the treatment of subfoveal choroidal neovascularization secondary to age related macular degeneration. Am J Ophthalmol. 2000; 130(4): 419-28.
58. de Juan E Jr, Machemer R. Vitreous surgery for hemorrhagic and fibrous complications of age-related macular degeneration. Am J Ophthalmol. 1988; 105(1): 25-9.
59. Thomas MA, Grand MG, Williams DF et al. Surgical management of subfoveal choroidal neovascularization. Ophthalmology. 1992; 99(6): 952-68.
60. Bressler NM, Bressler SB, Hawkins BS et al. Submacular surgery trials randomized pilot trial of laser photocoagulation versus surgery for recurrent choroidal neovascularization secondary to age-related macular degeneration: I. Ophthalmic outcomes submacular surgery trials pilot study report number 1. Am J Ophthalmol. 2000; 130(4): 387-407.
61. Hawkins BS, Bressler NM, Miskala PH et al. Surgery for subfoveal choroidal neovascularization in age-related macular degeneration: ophthalmic findings: SST report no. 11. Ophthalmology. 2004; 111(11): 1967-80.
62. van Meurs JC, ter Averst AE, Hofland LJ et al. Autologous peripheral retinal pigment epithelium translocation in patients with subfoveal neovascular membranes. Br J Ophthalmol. 2004; 88(1): 110-3.
63. Aisenbrey S, Lafaut B A, Szurman P et al. Iris pigment epithelial translocation in the treatment of exudative macular degeneration: a 3-year follow-up. Arch Ophthalmol. 2006; 124(2): 183-8.
64. Peyman G A, Blinder KJ, Paris CL et al. A technique for retinal pigment epithelium to extensive subfoveal scarring. Ophthalmic Surg. 1991; 22(2): 102-8.
65. van Meurs JC, van den Biesen PR. Autologous retinal pigment epithelium and choroid translocation in patients with exudative age-related macular degeneration: short-term follow-up. Am J Ophthalmol. 2003; 136(4): 688-95.
66. MacLaren RE, Bird AC, Sathia PJ et al. Long-term results of submacular surgery combined with macular translocation of the retinal pigment epithelium in neovascular age-related macular degeneration. Ophthalmology. 2005; 112(12): 2081-7.
67. Maaijwee K, Heimann H, Missotten T et al. Retinal pigment epithelium and choroid translocation in patients with exudative age-related macular degeneration: long-term results. Graefes Arch Clin Exp Ophthalmol. 2007; 245(11): 1681-9.
68. Dadgostar H, Kaiser PK. Review siRNA therapeutics for age-related macular degeneration: promises and pitfalls. Expert Review of Ophthalmol 2009; 4(5): 525-35.
69. Kang KN, Lee YS. RNA aptamers: a review of recent trends and applications. Adv Biochem Eng Biotechnol. 2013; 131: 153-69.
70. Megan M, McLaughlin MS, Marcella G et al. Initial exploration of oral pazopanib in healthy participants and patients with age-related macular degeneration. JAMA Ophthalmol. 2013; 131(12): 1595-601.
71. Muether PS, Neuhann I, Buhl C et al. Intraocular growth factors and cytokines in patients with dry and neovascular age-related macular degeneration. Retina. 2013; 33(9): 1809-14.
72. de Oliveira Dias JR, Rodrigues EB, Maia M et al. Cytokines in neovascular age-related macular degeneration: fundamentals of targeted combination therapy. Br J Ophthalmol. 2011; 95(12): 1631-7.
73. Ahmad I, Balasubramanian S, Del Debbio CB et al. Regulation of ocular angiogenesis by Notch signaling: implications in neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2011; 52(6): 2868-78.
74. Mousa SA, Mousa SS. Current status of vascular endothelial growth factor inhibition in age-related macular degeneration. Bio Drugs. 2010; 24(3): 183-94.
75. Palanki MS, Akiyama H, Campochiaro P et al. Development of prodrug 4-chloro-3-(5-methyl-3-{[4-(2-pyrrolidin-1-ylethoxy) phenyl]amino}-1,2,4-benzotria zin-7-yl)phenyl benzoate (TG100801): a topically administered therapeutic candidate in clinical trials for the treatment of age-related macular degeneration. J Med Chem. 2008; 51(6): 1546-59.
76. Doukas J, Mahesh S, Umeda N et al. Topical administration of a multi-targeted kinase inhibitor suppresses choroidal neovascularization and retinal edema. J Cell Physiol. 2008; 216(1): 29-37.
77. Palanki MS, Akiyama H, Campochiaro P et al. Development of prodrug 4-chloro-3-(5-methyl-3-{[4-(2-pyrrolidin-1-ylethoxy)phenyl]amino}-1,2,4-benzotriazin-7-yl)phenyl benzoate (TG100801): a topically administered therapeutic candidate in clinical trials for the treatment of age-related macular degeneration. J Med Chem. 2008; 51(6): 1546-59.
78. Csaky KG, Dugel PU, Pierce AJ et al. Clinical evaluation of pazopanib eye drops versus ranibizumab intravitreal injections in subjects with neovascular age-related macular degeneration. Ophthalmology. 2014; 25(14): 942-7.
79. Cao GF, Liu Y, Yang W et al. Rapamycin sensitive mTOR activation mediates nerve growth factor (NGF) induced cell migration and pro-survival effects against hydrogen peroxide in retinal pigment epithelial cells. Biochem Biophys Res Commun. 2011; 414(3): 499-505.
80. Zahn G, Vossmeyer D, Stragies RI et al. Preclinical evaluation of the novel small-molecule integrin alpha5beta1 inhibitor JSM6427 in monkey and rabbit models of choroidal neovascularization. Arch Ophthalmol. 2009; 127(10): 1329-35.
81. Ni Z, Hui P. Emerging pharmacologic therapies for wet age-related macular degeneration. Ophthalmologica. 2009; 223(6): 401-10.
82. Patel S. Combination therapy for age-related macular degeneration. Retina. 2009; 29(6 suppl): 45-8.
83. Ibrahim MA, Do DV, Sepah YJ et al. Vascular disrupting agent for neovascular age related macular degeneration: a pilot study of the safety and efficacy of intravenous combretastatin A-4 phosphate. BMC Pharmacol Toxicol. 2013; 14: 14-7.
84. Arias HR, Richards VE, Ng D et al. Role of non-neuronal nicotinic acetylcholine receptors in angiogenesis. Int J Biochem Cell Biol. 2009; 41(7): 1441-51.
85. Campochiaro PA, Nguyen QD, Shah SM et al. Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. Hum Gene Ther. 2006; 17: 167-76.
86. Rasmussen H, Chu KW, Campochairo P et al. An open-label, phase I, single administration, dose-escalation study of ADGVPEDF.11D (ADPEDF) in neovascular age related macular degeneration (AMD). Hum Gene Ther. 2001; 12: 2029-32.
87. Askou AL. Development of gene therapy for treatment of age-related macular degeneration. Acta Ophthalmol. 2014; 92(3): 1-38.
88. Voigt K, Izsvák Z, Ivics Z. Targeted gene insertion for molecular medicine. J Mol Med. 2008; 86(11): 1205-19.
89. Edwards AO, Ritter R 3rd, Abel KJ. Complement factor H polymorphism and age-related macular degeneration. Science. 2005; 308: 421-4.
90. Yates JR, Sepp T, Matharu BK et al. Genetic Factors in AMD Study Group. Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med. 2007; 357: 553-61.
91. Skeie JM, Fingert JH, Russell SR et al. Complement component C5a activates ICAM-1 expression on human choroidal endothelial cells. Invest Ophthalmol Vis Sci. 2010; 51(10): 5336-42.
92. Yehoshua Z, de Amorim Garcia Filho CA, Nunes RP et al. Systemic complement inhibition with eculizumab for geographic atrophy in age-related macular degeneration: the COMPLETE study. Ophthalmology. 2014; 121(3): 693-701.
93. Jackson TL, Chakravarthy U, Slakter JS et al. Stereotactic radiotherapy for neovascular age-related macular degeneration: year 2 results of the INTREPID study. INTREPID Study Group. Ophthalmology. 2015; 122(1): 138-45.
94. Nolan JM, Loskutova E, Howard AN et al. Macular pigment, visual function, and macular disease among subjects with Alzheimer’s disease: an exploratory study. J Alzheimers Dis. 2014; 42(4): 1191-202.
95. Wong WT, Kam W, Cunningham D et al. Treatment of geographic atrophy by the topical administration of OT-551: results of a phase II clinical trial. Invest Ophthalmol Vis Sci. 2010; 51(12): 6131-9.
96. Schmitz-Valckenberg S, Mössner A, Fleckenstein M et al. Therapy approaches for geographic atrophy. Ophthalmologe. 2010; 107(11): 1016-9.
97. Owen LA, Morrison MA, Ahn J et al. FLT1 genetic variation predisposes to neovascular AMD in ethnically diverse populations and alters systemic FLT1 expression. Invest Ophthalmol Vis Sci. 2014; 55(6): 3543-54.
98. Aoki A. Novel gene transfer using micellar nanovectors inhibits choroidal neovascularization. Nihon Ganka Gakkai Zasshi. 2013; 117(11): 869-77.
99. Rota R, Riccioni T, Zaccarini M et al. Marked inhibition of retinal neovascularization in ratsfollowing soluble-flt-1 gene transfer. J Gene Med. 2004; 6(9): 992-1002.
100. Tao W, Wen R, Goddard MB et al. Encapsulated cell-based delivery of CNTF reduces photoreceptor degeneration in animal models of retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2002; 43: 3292-8.
101. Damico FM, Gasparin F, Scolari MR et al. New approaches and potential treatments for dry age-related macular degeneration. Arq Bras Oftalmol. 2012; 75(1): 71-6.
102. Pulido JS, Winters JL, Boyer D. Preliminary analysis of the final multicenter investigation of rheopheresis for age related macular degeneration (AMD) trial (MIRA-1) results. Trans Am Ophthalmol Soc. 2006; 104: 221-31.
103. Klingel R, Fassbender C, Heibges A et al. RheoNet registry analysis of rheopheresis for microcirculatory disorders with a focus on age-related macular degeneration. Ther Apher Dial. 2010; 14(3): 276-86.
104. Rossi M, Puccini R, Romagnoli MC et al. Acute and subacute effect of rheopheresis on microvascular endothelial function in patients suffering from age-related macular degeneration. Ther Apher Dial. 2009; 13(6): 540-8.
105. Yeh JH, Cheng CK, Chiu HC. A case report of double-filtration plasmapheresis for the treatment of age related macular degeneration. Ther Apher Dial. 2008; 12(6): 500-4.