Resweratrol i kurkumina w walce z retinopatią cukrzycową. Lepiej razem niż osobno Artykuł przeglądowy

##plugins.themes.bootstrap3.article.main##

Adam Kabiesz

Abstrakt

Prozdrowotne działanie kurkuminy i resweratrolu znane jest od dawna. Do najważniejszych cech polifenoli roślinnych należy zaliczyć wpływ na naczynia krwionośne i udział w neutralizowaniu wolnych rodników tlenowych. Zarówno resweratrol, jak i kurkumina mają działanie antyoksydacyjne, a wspólne zastosowanie obu substancji znacząco poprawia ich skuteczność. W walce z retinopatią cukrzycową istotne okazują się również właściwości antyangiogenne polifenoli. Wielu badaczy wskazuje także na możliwość zastosowania resweratrolu i kurkuminy w terapii nowotworów.

Pobrania

Dane pobrania nie są jeszcze dostepne

##plugins.themes.bootstrap3.article.details##

Jak cytować
1.
Kabiesz A. Resweratrol i kurkumina w walce z retinopatią cukrzycową. Lepiej razem niż osobno. Ophthatherapy [Internet]. 31 grudzień 2023 [cytowane 14 maj 2024];10(4):284-8. Dostępne na: https://journalsmededu.pl/index.php/ophthatherapy/article/view/2942
Dział
Terapie zachowawcze

Bibliografia

1. Tinajero MG, Malik VS. An Update on the Epidemiology of Type 2 Diabetes: A Global Perspective. Endocrinol Metab Clin North Am. 2021; 50(3): 337-55. http://doi.org/10.1016/j.ecl.2021.05.013.
2. Cloete L. Diabetes mellitus: an overview of the types, symptoms, complications and management. Nurs Stand. 2022; 37(1): 61-6. http://doi.org/10.7748/ns.2021.e11709.
3.Zhao L, Pan Q. Highly-Expressed MiR-221-3p Distinctly Increases the Incidence of Diabetic Retinopathy in Patients With Type 2 Diabetes Mellitus. Transl Vis Sci Technol. 2023; 12(10): 17. http://doi.org/10.1167/tvst.12.10.17.
4. Lin KY, Hsih WH, Lin YB et al. Update in the epidemiology, risk factors, screening, and treatment of diabetic retinopathy. J Diabetes Investig. 2021; 12(8): 1322-5. http://doi.org/10.1111/jdi.13480.
5.Wright WS, Eshaq RS, Lee M et al. Retinal Physiology and Circulation: Effect of Diabetes. Compr Physiol. 2020; 10(3): 933-74. http://doi.org/10.1002/cphy.c190021.
6. Shukla UV, Tripathy K. Diabetic Retinopathy. In: StatPearls (Internet). StatPearls Publishing, Treasure Island (FL) 2023.
7. Blonde L, Umpierrez GE, Reddy SS et al. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan-2022 Update. Endocr Pract. 2022; 28(10): 923-1049. http://doi.org/10.1016/j.eprac.2022.08.002.
8. Zhou DD, Luo M, Huang SY et al. Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases. Oxid Med Cell Longev. 2021; 2021: 9932218. http://doi.org/10.1155/2021/9932218.
9. Delmas D, Cornebise C, Courtaut F et al. New Highlights of Resveratrol: A Review of Properties against Ocular Diseases. Int J Mol Sci. 2021; 22(3): 1295.
10. Al-Shabrawey M, Smith S. Prediction of diabetic retinopathy: Role of oxidative stress and relevance of apoptotic biomarkers. EPMA J. 2010; 1: 56-72.
11. Li J, Yu S, Ying J et al. Resveratrol Prevents ROS-Induced Apoptosis in High Glucose-Treated Retinal Capillary Endothelial Cells via the Activation of AMPK/Sirt1/PGC-1alpha Pathway. Oxid Med Cell Longev. 2017; 2017: 7584691.
12. Fathalipour M, Eghtedari M, Borges F et al. Caffeic Acid Alkyl Amide Derivatives Ameliorate Oxidative Stress and Modulate ERK1/2 and AKT Signaling Pathways in a Rat Model of Diabetic Retinopathy. Chem Biodivers. 2019; 16: e1900405.
13. Orallo F, Alvarez E, Camina M et al. The possible implication of trans-resveratrol in the cardioprotective effects of long-term moderate wine consumption. Mol Pharmacol. 2002; 61: 294-302.
14. Li ZD, Ma QY, Wang CA. Effect of resveratrol on pancreatic oxygen free radicals in rats with severe acute pancreatitis. World J Gastroenterol. 2006; 12: 137-40.
15. Kim HJ, Chang EJ, Cho SH et al. Antioxidative activity of resveratrol and its derivatives isolated from seeds of Paeonia lactiflora. Biosci Biotechnol Biochem. 2002; 66: 1990-3.
16. Dobrydneva Y, Williams RL, Blackmore PF. Trans-resveratrol inhibits calcium influx in thrombin-stimulated human platelets. Br J Pharmacol. 1999; 128: 149-57.
17. Olas B, Nowak P, Wachowicz B. Resveratrol protects against peroxynitrite-induced thiol oxidation in blood platelets. Cell Mol Biol Lett. 2004; 9: 577-87.
18. Cheng TO. Conundrum of the “French Paradox”. Circulation. 2001; 103: e132.
19. Chanvitayapongs S, Draczynska-Lusiak B, Sun AY. Amelioration of oxidative stress by antioxidants and resveratrol in PC12 cells. Neuroreport. 1997; 8(6): 1499-502. http://doi.org/10.1097/00001756-199704140-00035.
20. Raucy JL. Regulation of CYP3A4 expression in human hepatocytes by pharmaceuticals and natural products. Drug Metab Dispos. 2003; 31: 533-9.
21. Mutoh M. Takahashi M, Fukuda K et al. Suppression of cyclooxygenase-2 promoter-dependent transcriptional activity in colon cancer cells by chemopreventive agents with a resorcintype structure. Carcinogenesis. 2000; 21: 959-63.
22. Subbaramaiah K, Chung WJ, Michaluart P et al. Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol estertreated human mammary epithelial cells. J Biol Chem. 1998; 273: 21875-82.
23. Chen Y, Meng J, Li H et al. Resveratrol exhibits an effect on attenuating retina inflammatory condition and damage of diabetic retinopathy via PON1. Exp Eye Res. 2019; 181: 356-66.
24. Ghadiri Soufi F, Arbabi-Aval E, Rezaei Kanavi M et al. Anti-inflammatory properties of resveratrol in the retinas of type 2 diabetic rats. Clin Exp Pharm Physiol. 2015; 42: 63-8.
25. Oak MH, El Bedoui J, Schini-Kerth VB. Antiangiogenic properties of natural polyphenols from red wine and green tea. J Nutr Biochem. 2005; 16: 1-8.
26. Limagne E, Thibaudin M, Euvrard R et al. Sirtuin-1 Activation Controls Tumor Growth by Impeding Th17 Differentiation via STAT3 Deacetylation. Cell Rep. 2017; 19: 746-59.
27. Mohammad G, Abdelaziz GM, Siddiquei MM et al. Cross-Talk between Sirtuin 1 and the Proinflammatory Mediator High-Mobility Group Box-1 in the Regulation of Blood-Retinal Barrier Breakdown in Diabetic Retinopathy. Curr Eye Res. 2019; 44: 1133-43.
28. Brakenhielm E, Cao R, Cao Y. Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. FASEB J. 2001; 15: 1798-800.
29. Kowluru RA, Santos JM, Zhong Q. Sirt1, a negative regulator of matrix metalloproteinase-9 in diabetic retinopathy. Investig Ophthalmol Vis Sci. 2014; 55: 5653-60.
30. Bryl A, Falkowski M, Zorena K et al. The Role of Resveratrol in Eye Diseases-A Review of the Literature. Nutrients. 2022; 14(14): 2974. http://doi.org/10.3390/nu14142974.
31. Siewiera K, Łabieniec-Watała M. Rola polifenoli roślinnych w łagodzeniu niekorzystnego wpływu cukrzycy na homeostazę funkcjonowania mitochondriów. Postępy Fitoterapii. 2013; 1: 40.
32. Mastalerczyk A, Ciwińska M, Dębowska N et al. Cure-Cuma? Lecznicze działanie Curucuma longa. Związki biologicznie czynne w medycynie i ochronie zdrowia – przegląd zagadnień. Wydawnictwo Naukowe TYGIEL sp. z o.o., Lublin 2017: 87-104.
33. Biswas SK, McClure D, Jimenez LA et al. Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin- 8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid Redox Signal. 2005; 7(1-2): 32-41. http://doi.org/10.1089/ars.2005.7.32.
34. Radomska-Leśniewska DM, Hevelke A, Skopiński P et al. Reactive oxygen species and synthetic antioxidants as angiogenesis modulators. Pharmacol Rep. 2016; 68: 462-71.
35. Rai B, Kaur J, Jacobs R et al. Possible action mechanism for curcumin in pre-cancerous lesions based on serum and salivary markers of oxidative stress. J Oral Sci. 2010; 52(2): 251-6. http://doi.org/10.2334/josnusd.52.251.
36. Lal B, Kapoor AK, Asthana OP et al. Efficacy of curcumin in the management of chronic anterior uveitis. Phytother Res. 1999; 13(4): 318-22. http://doi.org/10.1002/(SICI)1099-1573(199906)13:4<318::AID-PTR445>3.0.CO;2-7.
37. El Nebrisi EG, Bagdas D, Toma W et al. Curcumin Acts as a Positive Allosteric Modulator of α7-Nicotinic Acetylcholine Receptors and Reverses Nociception in Mouse Models of Inflammatory Pain. J Pharmacol Exp Ther. 2018; 365(1): 190-200. http://doi.org/10.1124/jpet.117.245068.
38. Zhang DW, Fu M, Gao SH et al. Curcumin and diabetes: a systematic review. Evid Based Complement Alternat Med. 2013; 2013: 636053. http://doi.org/10.1155/2013/636053.
39. Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R et al. Curcumin extract for prevention of type 2 diabetes. Diabetes Care. 2012; 35(11): 2121-7. http://doi.org/10.2337/dc12-0116.
40. Chen WH, Chen Y, Cui GH. Effects of TNF-alpha and curcumin on the expression of VEGF in Raji and U937 cells on angiogenesis in ECV304 cells. Chin Med J. 2005; 118: 2052-7.
41. Bhandarkar SS, Arbiser JL. Curcumin as an inhibitor of angiogenesis. Adv Exp Med Biol. 2007; 595: 185-95.
42. Zia A, Farkhondeh T, Pourbagher-Shahri AM et al. The role of curcumin in aging and senescence: Molecular mechanisms. Biomed Pharmacother. 2021; 134: 111119. http://doi.org/10.1016/j.biopha.2020.111119.
43. Lund KC, Pantuso T. Combination Effects of Quercetin, Resveratrol and Curcumin on In Vitro Intestinal Absorption. J Restor Med. 2014; 3: 112-20.
44. Naujokat C, McKee DL. The “Big Five” Phytochemicals Targeting Cancer Stem Cells: Curcumin, EGCG, Sulforaphane, Resveratrol and Genistein. Curr Med Chem. 2021; 28(22): 4321-42. http://doi.org/10.2174/0929867327666200228110738.