Corneal biomechanical changes after myopic and hyperopic laser vision correction Artykuł przeglądowy

##plugins.themes.bootstrap3.article.main##

Zofia Pniakowska
Piotr Jurowski
Joanna Wierzbowska

Abstrakt

Laser vision correction became a popular method of refractive error treatment. The laser vision correction techniques influence the corneal biomechanical properties including corneal hysteresis and corneal resistance factor. The ocular response analyzer and Corvis ST devices are used in clinical practice to measure the corneal biomechanics. Reasonable laser treatment planning, taking into account the impact on corneal biomechanics, may potentially improve the safety of the refractive procedures. Thicker caps in refractive lenticule extraction and thinner flaps in flap-related procedures promote better corneal biomechanics preservation. The myopic refractive treatment appears to have a greater effect on corneal biomechanics weakening than hyperopic correction.

Pobrania

Dane pobrania nie są jeszcze dostepne

##plugins.themes.bootstrap3.article.details##

Jak cytować
1.
Pniakowska Z, Jurowski P, Wierzbowska J. Corneal biomechanical changes after myopic and hyperopic laser vision correction. Ophthatherapy [Internet]. 31 marzec 2023 [cytowane 22 listopad 2024];10(1):64-8. Dostępne na: https://journalsmededu.pl/index.php/ophthatherapy/article/view/2745
Dział
Chirurgia i laseroterapia

Bibliografia

1. Guo H, Hosseini-Moghaddam SM, Hodge W. Corneal biomechanical properties after SMILE versus FLEX, LASIK, LASEK, or PRK: a systematic review and meta-analysis. BMC Ophthalmol. 2019; 19(1): 167. http://doi.org/10.1186/s12886-019-1165-3.
2. Damgaard IB, Reffat M, Hjortdal J. Review of Corneal Biomechanical Properties Following LASIK and SMILE for Myopia and Myopic Astigmatism. Open Ophthalmol J. 2018; 12: 164-74. http://doi.org/10.2174/1874364101812010164.
3. Shang J, Shen Y, Jhanji V et al. Comparison of Corneal Biomechanics in Post-SMILE, Post-LASEK, and Keratoconic Eyes. Front Med (Lausanne). 2021; 8: 695-97. http://doi.org/10.3389/fmed.2021.695697.
4. Knox Cartwright NE, Tyrer JR, Jaycock PD et al. Effects of variation in depth and side cut angulations in LASIK and thin-flap LASIK using a femtosecond laser: a biomechanical study. J Refract Surg. 2012; 28(6): 419-25. http://doi.org/10.3928/1081597X-20120518-07.
5. Xin Y, Lopes BT, Wang J et al. Biomechanical Effects of tPRK, FS-LASIK, and SMILE on the Cornea. Front Bioeng Biotechnol. 2022; 10: 834270. http://doi.org/10.3389/fbioe.2022.834270.
6. Huang G, Melki S. Small Incision Lenticule Extraction (SMILE): Myths and Realities. Semin Ophthalmol. 2021; 36(4): 140-8. http://doi.org/ 10.1080/08820538.2021.1887897.
7. Raevdal P, Grauslund J, Vestergaard AH. Comparison of corneal biomechanical changes after refractive surgery by noncontact tonometry: small-incision lenticule extraction versus flap-based refractive surgery – a systematic review. Acta Ophthalmol. 2019; 97(2): 127-36. http://doi.org/10.1111/aos.13906.
8. Agca A, Ozgurhan EB, Demirok A et al. Comparison of corneal hysteresis and corneal resistance factor after small incision lenticule extraction and femtosecond laser-assisted LASIK: a prospective fellow eye study. Cont Lens Anterior Eye. 2014; 37(2): 77-80. http://doi.org/10.1016/j.clae.2013.05.003.
9. Kanellopoulos AJ. Comparison of corneal biomechanics after myopic small-incision lenticule extraction compared to LASIK: an ex vivo study. Clin Ophthalmol. 2018; 12: 237-45. http://doi.org/10.2147/OPTH.S153509.
10. Ganesh S, Patel U, Brar S. Posterior corneal curvature changes following Refractive Small Incision Lenticule Extraction. Clin Ophthalmol. 2015; 9: 1359-64. http://doi.org/10.2147/OPTH.S84354.
11. Hashemi H, Asgari S, Mortazavi M et al. Evaluation of Corneal Biomechanics After Excimer Laser Corneal Refractive Surgery in High Myopic Patients Using Dynamic Scheimpflug Technology. Eye Contact Lens. 2017; 43(6): 371-7. http://doi.org/10.1097/ICL.0000000000000280.
12. Lee H, Roberts CJ, Kim TI et al. Changes in biomechanically corrected intraocular pressure and dynamic corneal response parameters before and after transepithelial photorefractive keratectomy and femtosecond laser-assisted laser in situ keratomileusis. J Cataract Refract Surg. 2017; 43(12): 1495-503. http://doi.org/10.1016/j.jcrs.2017.08.019.
13. Qazi M, Sanderson J, Mahmoud A et al. Postoperative changes in intraocular pressure and corneal biomechanical metrics: laser in situ keratomileusis versus laser-assisted subepithelial keratectomy. J Cataract Refract Surg. 2009; 35(10): 1774-88. http://doi.org/10.1016/j.jcrs.2009.05.041.
14. Wu D, Wang Y, Zhang L et al. Corneal biomechanical effects: Small-incision lenticule extraction versus femtosecond laser-assisted laser in situ keratomileusis. J Cataract Refract Surg. 2014; 40: 954-62.
15. Elmohamady MN, Abdelghaffar W, Daifalla A et al. Evaluation of femtosecond laser in flap and cap creation in corneal refractive surgery for myopia: A 3-year follow-up. Clin Ophthalmol. 2018; 12: 935-42.
16. He S, Luo Y, Ye Y et al. A comparative and prospective study of corneal biomechanics after SMILE and FS-LASIK performed on the contralateral eyes of high myopia patients. Ann Transl Med. 2022; 10: 730.
17. Hwang ES, Stagg BC, Swan R et al. Corneal biomechanical properties after laser-assisted in situ keratomileusis and photorefractive keratectomy. Clin Ophthalmol. 2017; 11: 1785-9.
18. Lee H, Roberts CJ, Kim TI et al. Changes in biomechanically corrected intraocular pressure and dynamic corneal response parameters before and after transepithelial photorefractive keratectomy and femtosecond laser-assisted laser in situ keratomileusis. J Cataract Refract Surg. 2017; 43: 1495-503.
19. Liu M, Shi W, Liu X et al. Postoperative corneal biomechanics and influencing factors during femtosecond-assisted laser in situ keratomileusis (FS-LASIK) and laser-assisted subepithelial keratomileusis (LASEK) for high myopia. Lasers Med Sci. 2021; 36: 1709-17.
20. Santiago MR, Wilson SE, Hallahan KM et al. Changes in custom biomechanical variables after femtosecond laser in situ keratomileusis and photorefractive keratectomy for myopia. J Cataract Refract Surg. 2014; 40: 918-28.
21. Kamiya K, Shimizu K, Ohmoto F. Comparison of the changes in corneal biomechanical properties after photorefractive keratectomy and laser in situ keratomileusis. Cornea. 2009; 28(7): 765-9. http://doi.org/10.1097/ICO.0b013e3181967082.
22. Shen Y, Chen Z, Knorz MC et al. Comparison of corneal deformation parameters after SMILE, LASEK, and femtosecond laser-assisted LASIK. J Refract Surg. 2014; 30: 310-18. http://doi.org/10.3928/1081597X-20140422-01.
23. Wu D, Liu C, Li B et al. Influence of Cap Thickness on Corneal Curvature and Corneal Biomechanics After SMILE: A Prospective, Contralateral Eye Study. J Refract Surg. 2020; 36(2): 82-8. http://doi.org/10.3928/1081597X-20191216-01.
24. El-Massry AA, Goweida MB, Shama AE et al. Contralateral eye comparison between femtosecond small incision intrastromal lenticule extraction at depths of 100 and 160 mum. Cornea. 2015; 34(10): 1272-5. http://doi.org/10.1097/ICO.0000000000000571.
25. Randleman JB, Dawson DG, Grossniklaus HE et al. Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery. J Refract Surg. 2008; 24(1): S85-9.
26. Jun I, Kang DSY, Roberts CJ et al. Comparison of Clinical and Biomechanical Outcomes of Small Incision Lenticule Extraction With 120- and 140-μm Cap Thickness. Transl Vis Sci Technol. 2021; 10(8): 15. http://doi.org/10.1167/tvst.10.8.15.
27. Zhang L, Wang Y, Yang X. Ablation depth and its effects on corneal biomechanical changes in laser in situ keratomileusis and epipolis laser in situ keratomileusis. Int Ophthalmol. 2014; 34(2): 157-64. http://doi.org/10.1007/s10792-013-9798-3.
28. Goussous IA, El-Agha MS, Awadein A et al. The effect of flap thickness on corneal biomechanics after myopic laser in situ keratomileusis using the M-2 microkeratome. Clin Ophthalmol. 2017; 11: 2065-71. http://doi.org/10.2147/OPTH.S148216.
29. Medeiros FW, Sinha-Roy A, Alves MR et al. Biomechanical corneal changes induced by different flap thickness created by femtosecond laser. Clinics. 2011; 66: 1067-71.
30. De Medeiros FW, Sinha-Roy A, Alves MR et al. Differences in the early biomechanical effects of hyperopic and myopic laser in situ keratomileusis. J Cataract Refract Surg. 2010; 36(6): 947-53. http://doi.org/10.1016/j.jcrs.2009.12.032.
31. Spiru B, Torres-Netto EA, Kling S et al. Hyperopic SMILE Versus FS-LASIK: A Biomechanical Comparison in Human Fellow Corneas. J Refract Surg. 2021; 37(12): 810-15. http://doi.org/10.3928/1081597X-20210830-02.