Discriminating capabilities of neural and vascular parameters of optical coherent tomography in glaucoma Artykuł przeglądowy
##plugins.themes.bootstrap3.article.main##
Abstrakt
Optyczna koherentna tomografia (OCT) siatkówki jest złotym standardem obrazowania w diagnostyce i monitorowaniu jaskry, a angiografia optycznej koherentnej tomografii (OCTA) jest techniką obrazową o dużym potencjale naukowym i klinicznym u chorych z neuropatią jaskrową. Głównymi zaletami OCT i OCTA są nieinwazyjność, szybkość, powtarzalność badania oraz dostępność procedury badawczej. W artykule, na podstawie ostatnich metaanaliz przedstawiono wartościowość diagnostyczną grubości okołotarczowej warstwy włókien nerwowych siatkówki (pRNFL) i parametrów plamki mierzonych za pomocą domeny spektralnej (ang. spectral-domain OCT, SD-OCT) lub żródła strojnego OCT(ang. swept source, SS-OCT) w ogólnej populacji chorych z jaskrą i w różnych subpopulacjach chorych z jaskry. Ponadto wymieniono wyniki najważniejszych badań z użyciem OCTA w diagnostyce i monitorowaniu jaskry oraz ograniczenia tej metody.
Pobrania
##plugins.themes.bootstrap3.article.details##
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.
Copyright: © Medical Education sp. z o.o. License allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Address reprint requests to: Medical Education, Marcin Kuźma (marcin.kuzma@mededu.pl)
Bibliografia
2. Park HY, Shin HY, Park CK. Imaging the posterior segment of the eye using swept-source optical coherence tomography in myopic glaucoma eyes: comparison with enhanced-depth imaging. Am J Ophthalmol. 2014; 157: 550-7.
3. Agudo-Barriuso M, Villegas-Pérez MP, de Imperial JM et al. Anatomical and functional damage in experimental glaucoma. Curr Opin Pharmacol. 2013; 13: 5-11.
4. Lee SY, Lee EK, Park KH et al. Asymmetry Analysis of Macular Inner Retinal Layers for Glaucoma Diagnosis: Swept-Source Optical Coherence Tomography Study. PLoS One. 2016; 11: e0164866.
5. Chen MJ, Yang HY, Chang YF et al. Diagnostic ability of macular ganglion cell asymmetry in Preperimetric Glaucoma. BMC Ophthalmol. 2019; 19: 12.
6. Asrani S, Essaid L, Alder BD et al. Artifacts in spectral-domain optical coherence tomography measurements in glaucoma. JAMA Ophthalmol. 2014; 132: 396-402.
7. Kansal V, Armstrong JJ, Pintwala R et al. Optical coherence tomography for glaucoma diagnosis: An evidence based meta-analysis. PLoS One. 2018; 13: e0190621.
8. Nickells RW. Retinal ganglion cell death in glaucoma: the how, the why, and the maybe. J Glaucoma. 1996; 5: 345-56.
9. Hood DC. Improving our understanding, and detection, of glaucomatous damage: An approach based upon optical coherence tomography (OCT). Prog Retin Eye Res. 2017; 57: 46-75.
10. Lin JP, Lin PW, Lai IC et al. Segmental inner macular layer analysis with spectral-domain optical coherence tomography for early detection of normal tension glaucoma. PLoS One. 2019; 14: e0210215.
11. Oddone F, Lucenteforte E, Michelessi M et al. Macular versus Retinal Nerve Fiber Layer Parameters for Diagnosing Manifest Glaucoma: A Systematic Review of Diagnostic Accuracy Studies. Ophthalmology. 2016; 123: 939-49.
12. Xu X, Xiao H, Guo X et al. Diagnostic ability of macular ganglion cell-inner plexiform layer thickness in glaucoma suspects. Medicine (Baltimore). 2017; 96: e9182.
13. Torres LA, Jarrar F, Sharpe GP et al. Clinical relevance of protruded retinal layers in minimum rim width measurement of the optic nerve head. Br J Ophthalmol. 2018 pii: bjophthalmol-2018-313070. http://doi.org/10.1136/bjophthalmol-2018-313070.
14. Chen HS-L, Liu C-H, Wu W-C et al. Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Invest Opthalmol Vis Sci. 2017; 58: 3637-45.
15. Yarmohammadi A, Zangwill LM, Diniz-Filho A et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect and glaucoma eyes. Invest Opthalmol Vis Sci. 2016; 57: OCT451-OCT459.
16. Rao HL, Pradhan ZS, Weinreb RN et al. Relationship of optic nerve structure and function to peripapillary vessel density measurements of optical coherence tomography angiography in glaucoma. J Glaucoma. 2017; 26: 548-54.
17. Triolo G, Rabiolo A, Galasso M et al. Assessment of peripapillary and macular vessel density estimated with OCT-angiography in glaucoma suspects and glaucoma patients. Invest Opthalmol Vis Sci. 2017; 58: 715.
18. Silva L, Suwan Y, Jarukasetphon R et al. Retinal ganglion cell layer by Fourier-domain optical coherence tomography and microvasculature by optical coherence tomography angiography at the macular region in glaucoma. Invest Opthalmol Vis Sci. 2017; 58: 712.
19. Kurysheva NI, Maslova EV, Zolnikova IV et al. A Comparative Study of Structural, Functional and Circulatory Parameters in Glaucoma Diagnostics. PLoS One. 2018; 13: e0201599. http://doi.org/10.1371/journal.pone.0201599.
20. Van Melkebeke L, Barbosa-Breda J, Huygens M et al. Optical Coherence Tomography Angiography in Glaucoma: A Review. Ophthalmic Res. 2018; 60: 139-51.
21. Köse HC, Tekeli O. Optical coherence tomography angiography of the peripapillary region and macula in normal, primary open angle glaucoma, pseudoexfoliation glaucoma and ocular hypertension eyes. Int J Ophthalmol. 2020; 13: 744-54.
22. Zivkovic M, Dayanir V, Kocaturk T et al. Foveal Avascular Zone in Normal Tension Glaucoma Measured by Optical Coherence Tomography Angiography. Biomed Res Int. 2017; 2017: 3079141.
23. Zabel K, Zabel P, Kaluzna M et al. Correlation of retinal sensitivity in microperimetry with vascular density in optical coherence tomography angiography in primary open-angle glaucoma. PLoS One. 2020; 15: e0235571.
24. Moghimi S, Bowd C, Zangwill LM et al. Measurement Floors and Dynamic Ranges of OCT and OCT Angiography in Glaucoma. Ophthalmology. 2019; 126: 980-8.
25. Moghimi S, Zangwill LM, Penteado RC et al. Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Ophthalmology. 2018; 125: 1720-8.