Discriminating capabilities of neural and vascular parameters of optical coherent tomography in glaucoma Artykuł przeglądowy

##plugins.themes.bootstrap3.article.main##

Joanna Wierzbowska

Abstrakt

Optyczna koherentna tomografia (OCT) siatkówki jest złotym standardem obrazowania w diagnostyce i monitorowaniu jaskry, a angiografia optycznej koherentnej tomografii (OCTA) jest techniką obrazową o dużym potencjale naukowym i klinicznym u chorych z neuropatią jaskrową. Głównymi zaletami OCT i OCTA są nieinwazyjność, szybkość, powtarzalność badania oraz dostępność procedury badawczej. W artykule, na podstawie ostatnich metaanaliz przedstawiono wartościowość diagnostyczną grubości okołotarczowej warstwy włókien nerwowych siatkówki (pRNFL) i parametrów plamki mierzonych za pomocą domeny spektralnej (ang. spectral-domain OCT, SD-OCT) lub żródła strojnego OCT(ang. swept source, SS-OCT) w ogólnej populacji chorych z jaskrą i w różnych subpopulacjach chorych z jaskry. Ponadto wymieniono wyniki najważniejszych badań z użyciem OCTA w diagnostyce i monitorowaniu jaskry oraz ograniczenia tej metody.

Pobrania

Dane pobrania nie są jeszcze dostepne

##plugins.themes.bootstrap3.article.details##

Jak cytować
1.
Wierzbowska J. Discriminating capabilities of neural and vascular parameters of optical coherent tomography in glaucoma. Ophthatherapy [Internet]. 31 marzec 2022 [cytowane 3 lipiec 2024];9(1):5-11. Dostępne na: https://journalsmededu.pl/index.php/ophthatherapy/article/view/1753
Dział
Diagnostyka

Bibliografia

1. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989; 107: 453-64.
2. Park HY, Shin HY, Park CK. Imaging the posterior segment of the eye using swept-source optical coherence tomography in myopic glaucoma eyes: comparison with enhanced-depth imaging. Am J Ophthalmol. 2014; 157: 550-7.
3. Agudo-Barriuso M, Villegas-Pérez MP, de Imperial JM et al. Anatomical and functional damage in experimental glaucoma. Curr Opin Pharmacol. 2013; 13: 5-11.
4. Lee SY, Lee EK, Park KH et al. Asymmetry Analysis of Macular Inner Retinal Layers for Glaucoma Diagnosis: Swept-Source Optical Coherence Tomography Study. PLoS One. 2016; 11: e0164866.
5. Chen MJ, Yang HY, Chang YF et al. Diagnostic ability of macular ganglion cell asymmetry in Preperimetric Glaucoma. BMC Ophthalmol. 2019; 19: 12.
6. Asrani S, Essaid L, Alder BD et al. Artifacts in spectral-domain optical coherence tomography measurements in glaucoma. JAMA Ophthalmol. 2014; 132: 396-402.
7. Kansal V, Armstrong JJ, Pintwala R et al. Optical coherence tomography for glaucoma diagnosis: An evidence based meta-analysis. PLoS One. 2018; 13: e0190621.
8. Nickells RW. Retinal ganglion cell death in glaucoma: the how, the why, and the maybe. J Glaucoma. 1996; 5: 345-56.
9. Hood DC. Improving our understanding, and detection, of glaucomatous damage: An approach based upon optical coherence tomography (OCT). Prog Retin Eye Res. 2017; 57: 46-75.
10. Lin JP, Lin PW, Lai IC et al. Segmental inner macular layer analysis with spectral-domain optical coherence tomography for early detection of normal tension glaucoma. PLoS One. 2019; 14: e0210215.
11. Oddone F, Lucenteforte E, Michelessi M et al. Macular versus Retinal Nerve Fiber Layer Parameters for Diagnosing Manifest Glaucoma: A Systematic Review of Diagnostic Accuracy Studies. Ophthalmology. 2016; 123: 939-49.
12. Xu X, Xiao H, Guo X et al. Diagnostic ability of macular ganglion cell-inner plexiform layer thickness in glaucoma suspects. Medicine (Baltimore). 2017; 96: e9182.
13. Torres LA, Jarrar F, Sharpe GP et al. Clinical relevance of protruded retinal layers in minimum rim width measurement of the optic nerve head. Br J Ophthalmol. 2018 pii: bjophthalmol-2018-313070. http://doi.org/10.1136/bjophthalmol-2018-313070.
14. Chen HS-L, Liu C-H, Wu W-C et al. Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Invest Opthalmol Vis Sci. 2017; 58: 3637-45.
15. Yarmohammadi A, Zangwill LM, Diniz-Filho A et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect and glaucoma eyes. Invest Opthalmol Vis Sci. 2016; 57: OCT451-OCT459.
16. Rao HL, Pradhan ZS, Weinreb RN et al. Relationship of optic nerve structure and function to peripapillary vessel density measurements of optical coherence tomography angiography in glaucoma. J Glaucoma. 2017; 26: 548-54.
17. Triolo G, Rabiolo A, Galasso M et al. Assessment of peripapillary and macular vessel density estimated with OCT-angiography in glaucoma suspects and glaucoma patients. Invest Opthalmol Vis Sci. 2017; 58: 715.
18. Silva L, Suwan Y, Jarukasetphon R et al. Retinal ganglion cell layer by Fourier-domain optical coherence tomography and microvasculature by optical coherence tomography angiography at the macular region in glaucoma. Invest Opthalmol Vis Sci. 2017; 58: 712.
19. Kurysheva NI, Maslova EV, Zolnikova IV et al. A Comparative Study of Structural, Functional and Circulatory Parameters in Glaucoma Diagnostics. PLoS One. 2018; 13: e0201599. http://doi.org/10.1371/journal.pone.0201599.
20. Van Melkebeke L, Barbosa-Breda J, Huygens M et al. Optical Coherence Tomography Angiography in Glaucoma: A Review. Ophthalmic Res. 2018; 60: 139-51.
21. Köse HC, Tekeli O. Optical coherence tomography angiography of the peripapillary region and macula in normal, primary open angle glaucoma, pseudoexfoliation glaucoma and ocular hypertension eyes. Int J Ophthalmol. 2020; 13: 744-54.
22. Zivkovic M, Dayanir V, Kocaturk T et al. Foveal Avascular Zone in Normal Tension Glaucoma Measured by Optical Coherence Tomography Angiography. Biomed Res Int. 2017; 2017: 3079141.
23. Zabel K, Zabel P, Kaluzna M et al. Correlation of retinal sensitivity in microperimetry with vascular density in optical coherence tomography angiography in primary open-angle glaucoma. PLoS One. 2020; 15: e0235571.
24. Moghimi S, Bowd C, Zangwill LM et al. Measurement Floors and Dynamic Ranges of OCT and OCT Angiography in Glaucoma. Ophthalmology. 2019; 126: 980-8.
25. Moghimi S, Zangwill LM, Penteado RC et al. Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Ophthalmology. 2018; 125: 1720-8.