Age related macular degeneration. Part II: therapeutic options – surgical, pharmacological and composite therapies

Main Article Content

Adam Jarmak

Abstract

Macular degeneration associated with age is a leading cause of central vision loss. The disease process involves macular area of the retina and leads to a significant deterioration of visual acuity and, thus, a quality of life. A patient loses the opportunity to practice their profession, read, watch TV or drive. This condition is significantly associated with aging and degeneration of tissues and usually occurs after age of 50. Pharmaceuticals and other therapeutic approaches were introduced a few years ago and they substantially improved the prognosis for keeping the useful field of vision. The breakthrough discovery was clinically confirmed inhibition endothelial growth factor, causing neovascularization, which resulted in the lack of growth of abnormal vessels and as a result protected not only against the decrease in visual acuity, but even improved this function. It was a real revolution in ophthalmology, which gave patients hope for a full recovery. But is it possible? As practice and researchers’ reports show, struggle to inhibit the progress of the disease continues. Surgical treatment, topical drugs administered systemically, plasmapheresis, virus vector and radiotherapy are examples of the ways to fight to preserve central vision. The therapeutic arsenal is expanding rapidly and gives hope to inhibit the development of the disease.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Jarmak A. Age related macular degeneration. Part II: therapeutic options – surgical, pharmacological and composite therapies. Ophthatherapy [Internet]. 2015Mar.31 [cited 2025Jan.22];2(1):31-5. Available from: https://journalsmededu.pl/index.php/ophthatherapy/article/view/615
Section
Articles

References

1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971; 285: 1182-6.
2. Senger DR, Galli SJ, Dvorak AM et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983; 219: 983-5.
3. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989; 161: 851-8.
4. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003; 9(6): 669-76.
5. Houck KA, Ferrara N, Winer J et al. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol. 1991; 5: 1806-14.
6. Olsson AK, Dimberg A, Kreuger J et al. VEGF receptor signalling – in control of vascular function. Nat Rev Mol Cell Biol. 2006; 7(5): 359-71.
7. Sheikpranbabu S, Kalishwaralal K, Venkataraman D et al. Silver nanoparticles inhibit VEGF- and IL-1beta-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cells. J Nanobiotechnology. 2009; 7: 8.
8. Allen WR, Gower S, Wilsher S. Immunohistochemical localization of vascular endothelial growth factor (VEGF) and its two receptors (Flt-I and KDR) in the endometrium and placenta of the mare during the oestrous cycle and pregnancy. Reprod Domest Anim. 2007; 42(5): 516-26.
9. Witmer AN, Vrensen GF, Van Noorden CJ et al. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res. 2003; 22(1): 1-29.
10. Hiroshima K, Ng YS, Zhong L et al. Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol. 2007; 171(1): 53-67.
11. Ablonczy Z, Crosson CE. VEGF modulation of retinal pigment epithelium resistance. Exp Eye Res. 2007; 85(6): 762-71.
12. Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond). 2005; 109(3): 227-41.
13. Slomiany MG, Rosenzweig SA. Autocrine effects of IGF-I-induced VEGF and IGFBP-3 secretion in retinal pigment epithelial cell line ARPE-19. Am J Physiol Cell Physiol. 2004; 287(3): C746-53.
14. Funatsu H, Noma H, Mimura T et al. Association of vitreous inflammatory factors with diabetic macular edema. Ophthalmology. 2009; 116(1): 73-9.
15. Tsai DC, Charng MJ, Lee FL et al. Different plasma levels of vascular endothelial growth factor and nitric oxide between patients with choroidal and retinal neovascularisation. Ophthalmologica. 2006; 220(4): 246-51.
16. Boulton ME, Cai J, Grant MB. Gamma-Secretase: a multifaceted regulator of angiogenesis. J Cell Mol Med. 2008; 12(3): 781-95.
17. Chappelow AV, Kaiser PK. Neovascular age-related macular degeneration: potential therapies. Drugs. 2008; 68(8): 1029-36.
18. Michels S, Schmidt-Erfurth U, Rosenfeld PJ. Promising new treatments for neovascular age-related macular degeneration. Expert Opin Investig Drugs. 2006; 15(7): 779-93.
19. Leung E, Landa G. Update on current and future novel therapies for dry age-related macular degeneration. Expert Rev Clin Pharmacol. 2013; 6(5): 565-79.
20. Steinbrook R. The price of sight – ranibizumab, bevacizumab, and the treatment of macular degeneration. N Engl J Med. 2006; 355(14): 1409-12.
21. Bakri SJ, Snyder MR, Reid JM et al. Pharmacokinetics of intravitreal ranibizumab (Lucentis). Ophthalmology. 2007; 114(12): 2179-82.
22. Gillies MC, Walton RJ, Arnold JJ et al. Comparison of outcomes from a phase 3 study of age-related macular degeneration with a matched, observational cohort. Ophthalmology. 2014; 121(3): 676-81.
23. Kaiser PK, Blodi BA, Shapiro H et al. MARINA Study Group. Angiographic and optical coherence tomographic results of the MARINA study of ranibizumab in neovascular age-related macular degeneration. Ophthalmology. 2007; 114(10): 1868-75.
24. Regillo CD, Brown DM, Abraham P et al. Randomized, double-masked, sham-controlled trial of ranibizumab for neovascular age-related macular degeneration: PIER Study year 1. Am J Ophthalmol. 2008; 145(2): 239-48.
25. Schmidt-Erfurth U, Eldem B, Guymer R et al. Efficacy and safety of monthly versus quarterly ranibizumab treatment in neovascular age-related macular degeneration: the EXCITE study. Ophthalmology. 2011; 118(5): 831-9.
26. Dafer RM, Schneck M, Friberg TR et al. Intravitreal ranibizumab and bevacizumab: a review of risk. Semin Ophthalmol. 2007; 22(3): 201-4.
27. Krzystolik MG, Afshari MA, Adamis AP et al. Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment. Arch Ophthalmol. 2002; 120(3): 338-46.
28. Rosenfeld PJ, Mosfeghi AA, Puliafito CA. Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for neovascular age related macular degeneration. Ophthalmic Surg Lasers Imaging. 2005; 36: 331-5.
29. Teper S, Nowińska A, Lyssek-Boroń A et al. Neovascular form of age-related macular degeneration – current management in Poland and in Europe. Pol Merkur Lekarski. 2014; 37(217): 56-60.
30. Lad EM, Hammill BG, Qualls LG et al. Anti-VEGF treatment patterns for neovascular age-related macular degeneration among medicare beneficiaries. Am J Ophthalmol. 2014; 158(3): 537-43.
31. Schmidt-Erfurth UM, Richard G, Augustin A et al. Guidance for the treatment of neovascular age-related macular degeneration. Acta Ophthalmol Scand. 2007; 85(5): 486-94.
32. Ying GS, Kim BJ, Maguire MG et al. Sustained visual acuity loss in the comparison of age-related macular degeneration treatments trials. CATT Research Group. JAMA Ophthalmol. 2014; 132(8): 915-21.
33. Silva R, Axer-Siegel R, Eldem B et al. SECURE Study Group. The SECURE study: long-term safety of ranibizumab 0.5 mg in neovascular age-related macular degeneration. Ophthalmology. 2013; 120(1): 130-9.
34. Larrivée B, Freitas C, Suchting S et al. Guidance of vascular development: lessons from the nervous system. Circ Res. 2009; 104(4): 428-41.
35. Tamura H, Miyamoto K, Kiryu J et al. Intravitreal injection of corticosteroid attenuates leukostasis and vascular leakage in experimental diabetic retina. Invest Ophthalmol Vis Sci. 2005; 46(4): 1440-4.
36. Jonas JB, Hayler JK, Panda-Jonas S. Intravitreal injection of crystalline cortisone as adjunctive treatment of proliferative vitreoretinopathy. Br J Ophthalmol. 2000; 84(9): 1064-7.
37. Sivaprasad S, Patra S, DaCosta J et al. A pilot study on the combination treatment of reduced-fluence photodynamic therapy, intravitreal ranibizumab, intravitreal dexamethasone and oral minocycline for neovascular age-related macular degeneration. Ophthalmologica. 2011; 225(4): 200-6.
38. Si JK, Tang K, Bi HS et al. Combination of ranibizumab with photodynamic therapy vs ranibizumab monotherapy in the treatment of age-related macular degeneration: a systematic review and meta-analysis of randomized controlled trials. Int J Ophthalmol. 2014; 7(3): 541-9.
39. Ranchod TM, Ray SK, Daniels SA et al. LuceDex: a prospective study comparing ranibizumab plus dexamethasone combination therapy versus ranibizumab monotherapy for neovascular age-related macular degeneration. Retina. 2013; 33(8): 1600-4.
40. Augustin AJ, Puls S, Offermann I. Triple therapy for choroidal neovascularization due to age-related macular degeneration: verteporfin PDT, bevacizumab, and dexamethasone. Retina. 2007; 27(2): 133-40.
41. Söderberg AC, Algvere PV, Hengstler JC et al. Combination therapy with low-dose transpupillary thermotherapy and intravitreal ranibizumab for neovascular age related macular degeneration: a 24-month prospective randomized clinical study. Br J Ophthalmol. 2012; 96(5): 714-8.
42. Koch F, Scholtz S, Singh P et al. Kombinierte intravitreale Therapie zur Behandlung der altersbedingten Makuladegeneration. Klin Monbl Augenheilkd. 2008; 225(12): 1003-8.
43. de Oliveira Dias JR, Rodrigues EB, Maia M. Cytokines in neovascular age-related macular degeneration: fundamentals of targeted combination therapy. Br J Ophthalmol. 2011; 95(12): 1631-7.
44. Zehetner C, Kirchmair R, Neururer SB et al. Systemic upregulation of PDGF-B in patients with neovascular AMD. Invest Ophthalmol Vis Sci. 2014; 55(1): 337-44.
45. Shibuya M. Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis. 2006; 9(4): 225-30.
46. Diago T, Pulido JS, Molina JR et al. Ranibizumab combined with low-dose sorafenib for exudative age-related macular degeneration. Mayo Clin Proc. 2008; 83(2): 231-4.
47. Fischer T. A new possible strategy for prevention and preventive treatment of age-related macular degeneration resting on recent clinical and pathophysiological observations. Orv Hetil. 2009; 150(11): 503-12.
48. Geltzer A, Turalba A, Vedula SS. Surgical implantation of steroids with antiangiogenic characteristics for treating neovascular age-related macular degeneration. Cochrane Database Syst Rev. 2013 Jan 1: CD005022.
49. Joussen AM, Kirchhof B. Surgery for age-related macular degeneration. Still an option in the age of pharmacotherapy? Klin Monbl Augenheilkd. 2014; 231(9): 874-82.
50. Machemer R, Steinhorst UH. Retinal separation, retinotomy, and macular relocation: I. Experimental studies in the rabbit eye. Graefes Arch Clin Exp Ophthalmol. 1993; 231(11): 629-34.
51. Machemer R. Macular translocation. Am J Ophthalmol. 1998; 125(5): 698-700.
52. Aisenbrey S, Bartz-Schmidt KU, Walter P et al. Long-term follow-up of macular translocation with 360 degrees retinotomy for exudative age-related macular degeneration. Arch Ophthalmol. 2007; 125(10): 1367-72.
53. Charles S, Calzada J, Wood B. Submacular surgery and macular translocation. In: Charles S, Calzada J, Wood B (ed). Vitreous microsurgery. Fourth Edition. Lippincott Williams & Wilkins, Philadelphia 2007; 14: 163-71.
54. Mruthyunjaya P, Stinnett SS, Toth CA. Change in visual function after macular translocation with 360 degrees retinectomy for neovascular age-related macular degeneration. Ophthalmology. 2004; 111(9): 1715-24.
55. Uppal G, Milliken A, Lee J et al. New algorithm for assessing patient suitability for macular translocation surgery. Clin Experiment Ophthalmol .2007; 35(5): 448-57.
56. Aisenbrey S, Lafaut BA, Szurman P et al. Macular translocation with 360 degrees retinotomy for exudative age-related macular degeneration. Arch Ophthalmol. 2002; 120(4): 451-9.
57. Pieramici DJ, de Juan E Jr, Fujii GY et al. Limited inferior macular translocation for the treatment of subfoveal choroidal neovascularization secondary to age related macular degeneration. Am J Ophthalmol. 2000; 130(4): 419-28.
58. de Juan E Jr, Machemer R. Vitreous surgery for hemorrhagic and fibrous complications of age-related macular degeneration. Am J Ophthalmol. 1988; 105(1): 25-9.
59. Thomas MA, Grand MG, Williams DF et al. Surgical management of subfoveal choroidal neovascularization. Ophthalmology. 1992; 99(6): 952-68.
60. Bressler NM, Bressler SB, Hawkins BS et al. Submacular surgery trials randomized pilot trial of laser photocoagulation versus surgery for recurrent choroidal neovascularization secondary to age-related macular degeneration: I. Ophthalmic outcomes submacular surgery trials pilot study report number 1. Am J Ophthalmol. 2000; 130(4): 387-407.
61. Hawkins BS, Bressler NM, Miskala PH et al. Surgery for subfoveal choroidal neovascularization in age-related macular degeneration: ophthalmic findings: SST report no. 11. Ophthalmology. 2004; 111(11): 1967-80.
62. van Meurs JC, ter Averst AE, Hofland LJ et al. Autologous peripheral retinal pigment epithelium translocation in patients with subfoveal neovascular membranes. Br J Ophthalmol. 2004; 88(1): 110-3.
63. Aisenbrey S, Lafaut B A, Szurman P et al. Iris pigment epithelial translocation in the treatment of exudative macular degeneration: a 3-year follow-up. Arch Ophthalmol. 2006; 124(2): 183-8.
64. Peyman G A, Blinder KJ, Paris CL et al. A technique for retinal pigment epithelium to extensive subfoveal scarring. Ophthalmic Surg. 1991; 22(2): 102-8.
65. van Meurs JC, van den Biesen PR. Autologous retinal pigment epithelium and choroid translocation in patients with exudative age-related macular degeneration: short-term follow-up. Am J Ophthalmol. 2003; 136(4): 688-95.
66. MacLaren RE, Bird AC, Sathia PJ et al. Long-term results of submacular surgery combined with macular translocation of the retinal pigment epithelium in neovascular age-related macular degeneration. Ophthalmology. 2005; 112(12): 2081-7.
67. Maaijwee K, Heimann H, Missotten T et al. Retinal pigment epithelium and choroid translocation in patients with exudative age-related macular degeneration: long-term results. Graefes Arch Clin Exp Ophthalmol. 2007; 245(11): 1681-9.
68. Dadgostar H, Kaiser PK. Review siRNA therapeutics for age-related macular degeneration: promises and pitfalls. Expert Review of Ophthalmol 2009; 4(5): 525-35.
69. Kang KN, Lee YS. RNA aptamers: a review of recent trends and applications. Adv Biochem Eng Biotechnol. 2013; 131: 153-69.
70. Megan M, McLaughlin MS, Marcella G et al. Initial exploration of oral pazopanib in healthy participants and patients with age-related macular degeneration. JAMA Ophthalmol. 2013; 131(12): 1595-601.
71. Muether PS, Neuhann I, Buhl C et al. Intraocular growth factors and cytokines in patients with dry and neovascular age-related macular degeneration. Retina. 2013; 33(9): 1809-14.
72. de Oliveira Dias JR, Rodrigues EB, Maia M et al. Cytokines in neovascular age-related macular degeneration: fundamentals of targeted combination therapy. Br J Ophthalmol. 2011; 95(12): 1631-7.
73. Ahmad I, Balasubramanian S, Del Debbio CB et al. Regulation of ocular angiogenesis by Notch signaling: implications in neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2011; 52(6): 2868-78.
74. Mousa SA, Mousa SS. Current status of vascular endothelial growth factor inhibition in age-related macular degeneration. Bio Drugs. 2010; 24(3): 183-94.
75. Palanki MS, Akiyama H, Campochiaro P et al. Development of prodrug 4-chloro-3-(5-methyl-3-{[4-(2-pyrrolidin-1-ylethoxy) phenyl]amino}-1,2,4-benzotria zin-7-yl)phenyl benzoate (TG100801): a topically administered therapeutic candidate in clinical trials for the treatment of age-related macular degeneration. J Med Chem. 2008; 51(6): 1546-59.
76. Doukas J, Mahesh S, Umeda N et al. Topical administration of a multi-targeted kinase inhibitor suppresses choroidal neovascularization and retinal edema. J Cell Physiol. 2008; 216(1): 29-37.
77. Palanki MS, Akiyama H, Campochiaro P et al. Development of prodrug 4-chloro-3-(5-methyl-3-{[4-(2-pyrrolidin-1-ylethoxy)phenyl]amino}-1,2,4-benzotriazin-7-yl)phenyl benzoate (TG100801): a topically administered therapeutic candidate in clinical trials for the treatment of age-related macular degeneration. J Med Chem. 2008; 51(6): 1546-59.
78. Csaky KG, Dugel PU, Pierce AJ et al. Clinical evaluation of pazopanib eye drops versus ranibizumab intravitreal injections in subjects with neovascular age-related macular degeneration. Ophthalmology. 2014; 25(14): 942-7.
79. Cao GF, Liu Y, Yang W et al. Rapamycin sensitive mTOR activation mediates nerve growth factor (NGF) induced cell migration and pro-survival effects against hydrogen peroxide in retinal pigment epithelial cells. Biochem Biophys Res Commun. 2011; 414(3): 499-505.
80. Zahn G, Vossmeyer D, Stragies RI et al. Preclinical evaluation of the novel small-molecule integrin alpha5beta1 inhibitor JSM6427 in monkey and rabbit models of choroidal neovascularization. Arch Ophthalmol. 2009; 127(10): 1329-35.
81. Ni Z, Hui P. Emerging pharmacologic therapies for wet age-related macular degeneration. Ophthalmologica. 2009; 223(6): 401-10.
82. Patel S. Combination therapy for age-related macular degeneration. Retina. 2009; 29(6 suppl): 45-8.
83. Ibrahim MA, Do DV, Sepah YJ et al. Vascular disrupting agent for neovascular age related macular degeneration: a pilot study of the safety and efficacy of intravenous combretastatin A-4 phosphate. BMC Pharmacol Toxicol. 2013; 14: 14-7.
84. Arias HR, Richards VE, Ng D et al. Role of non-neuronal nicotinic acetylcholine receptors in angiogenesis. Int J Biochem Cell Biol. 2009; 41(7): 1441-51.
85. Campochiaro PA, Nguyen QD, Shah SM et al. Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. Hum Gene Ther. 2006; 17: 167-76.
86. Rasmussen H, Chu KW, Campochairo P et al. An open-label, phase I, single administration, dose-escalation study of ADGVPEDF.11D (ADPEDF) in neovascular age related macular degeneration (AMD). Hum Gene Ther. 2001; 12: 2029-32.
87. Askou AL. Development of gene therapy for treatment of age-related macular degeneration. Acta Ophthalmol. 2014; 92(3): 1-38.
88. Voigt K, Izsvák Z, Ivics Z. Targeted gene insertion for molecular medicine. J Mol Med. 2008; 86(11): 1205-19.
89. Edwards AO, Ritter R 3rd, Abel KJ. Complement factor H polymorphism and age-related macular degeneration. Science. 2005; 308: 421-4.
90. Yates JR, Sepp T, Matharu BK et al. Genetic Factors in AMD Study Group. Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med. 2007; 357: 553-61.
91. Skeie JM, Fingert JH, Russell SR et al. Complement component C5a activates ICAM-1 expression on human choroidal endothelial cells. Invest Ophthalmol Vis Sci. 2010; 51(10): 5336-42.
92. Yehoshua Z, de Amorim Garcia Filho CA, Nunes RP et al. Systemic complement inhibition with eculizumab for geographic atrophy in age-related macular degeneration: the COMPLETE study. Ophthalmology. 2014; 121(3): 693-701.
93. Jackson TL, Chakravarthy U, Slakter JS et al. Stereotactic radiotherapy for neovascular age-related macular degeneration: year 2 results of the INTREPID study. INTREPID Study Group. Ophthalmology. 2015; 122(1): 138-45.
94. Nolan JM, Loskutova E, Howard AN et al. Macular pigment, visual function, and macular disease among subjects with Alzheimer’s disease: an exploratory study. J Alzheimers Dis. 2014; 42(4): 1191-202.
95. Wong WT, Kam W, Cunningham D et al. Treatment of geographic atrophy by the topical administration of OT-551: results of a phase II clinical trial. Invest Ophthalmol Vis Sci. 2010; 51(12): 6131-9.
96. Schmitz-Valckenberg S, Mössner A, Fleckenstein M et al. Therapy approaches for geographic atrophy. Ophthalmologe. 2010; 107(11): 1016-9.
97. Owen LA, Morrison MA, Ahn J et al. FLT1 genetic variation predisposes to neovascular AMD in ethnically diverse populations and alters systemic FLT1 expression. Invest Ophthalmol Vis Sci. 2014; 55(6): 3543-54.
98. Aoki A. Novel gene transfer using micellar nanovectors inhibits choroidal neovascularization. Nihon Ganka Gakkai Zasshi. 2013; 117(11): 869-77.
99. Rota R, Riccioni T, Zaccarini M et al. Marked inhibition of retinal neovascularization in ratsfollowing soluble-flt-1 gene transfer. J Gene Med. 2004; 6(9): 992-1002.
100. Tao W, Wen R, Goddard MB et al. Encapsulated cell-based delivery of CNTF reduces photoreceptor degeneration in animal models of retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2002; 43: 3292-8.
101. Damico FM, Gasparin F, Scolari MR et al. New approaches and potential treatments for dry age-related macular degeneration. Arq Bras Oftalmol. 2012; 75(1): 71-6.
102. Pulido JS, Winters JL, Boyer D. Preliminary analysis of the final multicenter investigation of rheopheresis for age related macular degeneration (AMD) trial (MIRA-1) results. Trans Am Ophthalmol Soc. 2006; 104: 221-31.
103. Klingel R, Fassbender C, Heibges A et al. RheoNet registry analysis of rheopheresis for microcirculatory disorders with a focus on age-related macular degeneration. Ther Apher Dial. 2010; 14(3): 276-86.
104. Rossi M, Puccini R, Romagnoli MC et al. Acute and subacute effect of rheopheresis on microvascular endothelial function in patients suffering from age-related macular degeneration. Ther Apher Dial. 2009; 13(6): 540-8.
105. Yeh JH, Cheng CK, Chiu HC. A case report of double-filtration plasmapheresis for the treatment of age related macular degeneration. Ther Apher Dial. 2008; 12(6): 500-4.