Resveratrol and curcumin against diabetic retinopathy. Better together than apart Review article

Main Article Content

Adam Kabiesz


The health-promoting effects of curcumin and resveratrol have been known for a long time. The most important features of polyphenols include their effect on blood vessels and participation in the neutralization of free oxygen radicals. Both resveratrol and curcumin exhibit antioxidant effects, and the combined use of both substances significantly improves their effectiveness. In the fight against diabetic retinopathy, the antiangiogenic effect of polyphenols also turn out to be important. Many researchers also point to the possibility of using resveratrol and curcumin in cancer therapy.


Download data is not yet available.

Article Details

How to Cite
Kabiesz A. Resveratrol and curcumin against diabetic retinopathy. Better together than apart. Ophthatherapy [Internet]. 2023Dec.31 [cited 2024Jul.15];10(4):284-8. Available from:
Conservative treatment


1. Tinajero MG, Malik VS. An Update on the Epidemiology of Type 2 Diabetes: A Global Perspective. Endocrinol Metab Clin North Am. 2021; 50(3): 337-55.
2. Cloete L. Diabetes mellitus: an overview of the types, symptoms, complications and management. Nurs Stand. 2022; 37(1): 61-6.
3.Zhao L, Pan Q. Highly-Expressed MiR-221-3p Distinctly Increases the Incidence of Diabetic Retinopathy in Patients With Type 2 Diabetes Mellitus. Transl Vis Sci Technol. 2023; 12(10): 17.
4. Lin KY, Hsih WH, Lin YB et al. Update in the epidemiology, risk factors, screening, and treatment of diabetic retinopathy. J Diabetes Investig. 2021; 12(8): 1322-5.
5.Wright WS, Eshaq RS, Lee M et al. Retinal Physiology and Circulation: Effect of Diabetes. Compr Physiol. 2020; 10(3): 933-74.
6. Shukla UV, Tripathy K. Diabetic Retinopathy. In: StatPearls (Internet). StatPearls Publishing, Treasure Island (FL) 2023.
7. Blonde L, Umpierrez GE, Reddy SS et al. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan-2022 Update. Endocr Pract. 2022; 28(10): 923-1049.
8. Zhou DD, Luo M, Huang SY et al. Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases. Oxid Med Cell Longev. 2021; 2021: 9932218.
9. Delmas D, Cornebise C, Courtaut F et al. New Highlights of Resveratrol: A Review of Properties against Ocular Diseases. Int J Mol Sci. 2021; 22(3): 1295.
10. Al-Shabrawey M, Smith S. Prediction of diabetic retinopathy: Role of oxidative stress and relevance of apoptotic biomarkers. EPMA J. 2010; 1: 56-72.
11. Li J, Yu S, Ying J et al. Resveratrol Prevents ROS-Induced Apoptosis in High Glucose-Treated Retinal Capillary Endothelial Cells via the Activation of AMPK/Sirt1/PGC-1alpha Pathway. Oxid Med Cell Longev. 2017; 2017: 7584691.
12. Fathalipour M, Eghtedari M, Borges F et al. Caffeic Acid Alkyl Amide Derivatives Ameliorate Oxidative Stress and Modulate ERK1/2 and AKT Signaling Pathways in a Rat Model of Diabetic Retinopathy. Chem Biodivers. 2019; 16: e1900405.
13. Orallo F, Alvarez E, Camina M et al. The possible implication of trans-resveratrol in the cardioprotective effects of long-term moderate wine consumption. Mol Pharmacol. 2002; 61: 294-302.
14. Li ZD, Ma QY, Wang CA. Effect of resveratrol on pancreatic oxygen free radicals in rats with severe acute pancreatitis. World J Gastroenterol. 2006; 12: 137-40.
15. Kim HJ, Chang EJ, Cho SH et al. Antioxidative activity of resveratrol and its derivatives isolated from seeds of Paeonia lactiflora. Biosci Biotechnol Biochem. 2002; 66: 1990-3.
16. Dobrydneva Y, Williams RL, Blackmore PF. Trans-resveratrol inhibits calcium influx in thrombin-stimulated human platelets. Br J Pharmacol. 1999; 128: 149-57.
17. Olas B, Nowak P, Wachowicz B. Resveratrol protects against peroxynitrite-induced thiol oxidation in blood platelets. Cell Mol Biol Lett. 2004; 9: 577-87.
18. Cheng TO. Conundrum of the “French Paradox”. Circulation. 2001; 103: e132.
19. Chanvitayapongs S, Draczynska-Lusiak B, Sun AY. Amelioration of oxidative stress by antioxidants and resveratrol in PC12 cells. Neuroreport. 1997; 8(6): 1499-502.
20. Raucy JL. Regulation of CYP3A4 expression in human hepatocytes by pharmaceuticals and natural products. Drug Metab Dispos. 2003; 31: 533-9.
21. Mutoh M. Takahashi M, Fukuda K et al. Suppression of cyclooxygenase-2 promoter-dependent transcriptional activity in colon cancer cells by chemopreventive agents with a resorcintype structure. Carcinogenesis. 2000; 21: 959-63.
22. Subbaramaiah K, Chung WJ, Michaluart P et al. Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol estertreated human mammary epithelial cells. J Biol Chem. 1998; 273: 21875-82.
23. Chen Y, Meng J, Li H et al. Resveratrol exhibits an effect on attenuating retina inflammatory condition and damage of diabetic retinopathy via PON1. Exp Eye Res. 2019; 181: 356-66.
24. Ghadiri Soufi F, Arbabi-Aval E, Rezaei Kanavi M et al. Anti-inflammatory properties of resveratrol in the retinas of type 2 diabetic rats. Clin Exp Pharm Physiol. 2015; 42: 63-8.
25. Oak MH, El Bedoui J, Schini-Kerth VB. Antiangiogenic properties of natural polyphenols from red wine and green tea. J Nutr Biochem. 2005; 16: 1-8.
26. Limagne E, Thibaudin M, Euvrard R et al. Sirtuin-1 Activation Controls Tumor Growth by Impeding Th17 Differentiation via STAT3 Deacetylation. Cell Rep. 2017; 19: 746-59.
27. Mohammad G, Abdelaziz GM, Siddiquei MM et al. Cross-Talk between Sirtuin 1 and the Proinflammatory Mediator High-Mobility Group Box-1 in the Regulation of Blood-Retinal Barrier Breakdown in Diabetic Retinopathy. Curr Eye Res. 2019; 44: 1133-43.
28. Brakenhielm E, Cao R, Cao Y. Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. FASEB J. 2001; 15: 1798-800.
29. Kowluru RA, Santos JM, Zhong Q. Sirt1, a negative regulator of matrix metalloproteinase-9 in diabetic retinopathy. Investig Ophthalmol Vis Sci. 2014; 55: 5653-60.
30. Bryl A, Falkowski M, Zorena K et al. The Role of Resveratrol in Eye Diseases-A Review of the Literature. Nutrients. 2022; 14(14): 2974.
31. Siewiera K, Łabieniec-Watała M. Rola polifenoli roślinnych w łagodzeniu niekorzystnego wpływu cukrzycy na homeostazę funkcjonowania mitochondriów. Postępy Fitoterapii. 2013; 1: 40.
32. Mastalerczyk A, Ciwińska M, Dębowska N et al. Cure-Cuma? Lecznicze działanie Curucuma longa. Związki biologicznie czynne w medycynie i ochronie zdrowia – przegląd zagadnień. Wydawnictwo Naukowe TYGIEL sp. z o.o., Lublin 2017: 87-104.
33. Biswas SK, McClure D, Jimenez LA et al. Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin- 8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid Redox Signal. 2005; 7(1-2): 32-41.
34. Radomska-Leśniewska DM, Hevelke A, Skopiński P et al. Reactive oxygen species and synthetic antioxidants as angiogenesis modulators. Pharmacol Rep. 2016; 68: 462-71.
35. Rai B, Kaur J, Jacobs R et al. Possible action mechanism for curcumin in pre-cancerous lesions based on serum and salivary markers of oxidative stress. J Oral Sci. 2010; 52(2): 251-6.
36. Lal B, Kapoor AK, Asthana OP et al. Efficacy of curcumin in the management of chronic anterior uveitis. Phytother Res. 1999; 13(4): 318-22.<318::AID-PTR445>3.0.CO;2-7.
37. El Nebrisi EG, Bagdas D, Toma W et al. Curcumin Acts as a Positive Allosteric Modulator of α7-Nicotinic Acetylcholine Receptors and Reverses Nociception in Mouse Models of Inflammatory Pain. J Pharmacol Exp Ther. 2018; 365(1): 190-200.
38. Zhang DW, Fu M, Gao SH et al. Curcumin and diabetes: a systematic review. Evid Based Complement Alternat Med. 2013; 2013: 636053.
39. Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R et al. Curcumin extract for prevention of type 2 diabetes. Diabetes Care. 2012; 35(11): 2121-7.
40. Chen WH, Chen Y, Cui GH. Effects of TNF-alpha and curcumin on the expression of VEGF in Raji and U937 cells on angiogenesis in ECV304 cells. Chin Med J. 2005; 118: 2052-7.
41. Bhandarkar SS, Arbiser JL. Curcumin as an inhibitor of angiogenesis. Adv Exp Med Biol. 2007; 595: 185-95.
42. Zia A, Farkhondeh T, Pourbagher-Shahri AM et al. The role of curcumin in aging and senescence: Molecular mechanisms. Biomed Pharmacother. 2021; 134: 111119.
43. Lund KC, Pantuso T. Combination Effects of Quercetin, Resveratrol and Curcumin on In Vitro Intestinal Absorption. J Restor Med. 2014; 3: 112-20.
44. Naujokat C, McKee DL. The “Big Five” Phytochemicals Targeting Cancer Stem Cells: Curcumin, EGCG, Sulforaphane, Resveratrol and Genistein. Curr Med Chem. 2021; 28(22): 4321-42.