Interaction of silicone hydrogel contact lenses with lipids – a chronological review Review article

Main Article Content

Tomasz Suliński
Jacek Pniewski

Abstract

Silicone hydrogel (SiHy) contact lenses are a common form of correction of refractive errors prescribed by eye care professionals around the world. SiHy lenses perform in a complex environment, which is the surface of the eye and the tear film. Therefore, they are exposed to various factors, such as lipid deposits. The aims of this paper are to review available scientific reports on the study of SiHy lens interactions with lipids and search for further research objectives. A total of 57 publications were identified and reviewed, from 2003 to 2020. In general, SiHy lenses are more likely to accumulate lipid deposits than traditional hydrogel lenses, although there are significant differences between SiHy lens materials that may result from different methods used in the studies. The review includes studies on various aspects of interactions between lenses and lipids, such as those concerning the effectiveness of lipids removal from lenses by care solutions. The conclusion points out future research directions, such as measurements of lipid diffusion in SiHy lens' matrices.

Article Details

How to Cite
1.
Suliński T, Pniewski J. Interaction of silicone hydrogel contact lenses with lipids – a chronological review. Ophthatherapy [Internet]. 2020Dec.31 [cited 2021Mar.5];7(4):306-25. Available from: https://journalsmededu.pl/index.php/ophthatherapy/article/view/1133
Section
Conservative treatment

References

1. Efron N. History. In: Contact Lens Practice. 2018: 7. http://doi.org/10.1016/b978-0-7020-6660-3.00001-0.
2. Morgan PB, Woods CA, Tranoudis IG et al. Contact Lens Spectrum – International Contact Lens Prescribing in 2014. Contact Lens Spectr. 2015; 30 (January 2015): 28-33. https://www.clspectrum.com/issues/2020/january-2020/international-contact-lens-prescribing-in-2019 (access: 9.09.2020).
3. Yokoi N, Bron AJ, Georgiev GA. The precorneal tear film as a fluid shell: The effect of blinking and saccades on tear film distribution and dynamics. Ocul Surf. 2014; 12(4): 252-66. http://doi.org/10.1016/j.jtos.2014.01.006.
4. McCulley JP, Shine W. A compositional based model for the tear film lipid layer. Trans Am Ophthalmol Soc. 1997; 95: 79-93.
5. King-Smith PE, Bailey MD, Braun RJ. Four characteristics and a model of an effective tear film lipid layer (tfll). Ocul Surf. 2013; 11(4): 236-45. http://doi.org/10.1016/j.jtos.2013.05.003.
6.Bron AJ, Tiffany JM, Gouveia SM et al. Functional aspects of the tear film lipid layer. Exp Eye Res. 2004; 78(3): 347-60. http://doi.org/10.1016/j.exer.2003.09.019.
7. Peng CC, Cerretani C, Li Y et al. Flow evaporimeter to assess evaporative resistance of human tear-film lipid layer. Ind Eng Chem Res. 2014; 53(47): 18130-9. http://doi.org/10.1021/ie5030497.
8. Craig JP, Tomlinson A. Importance of the lipid layer in human tear film stability and evaporation. Optom Vis Sci. 1997; 74(1): 8-13. http://doi.org/10.1097/00006324-199701000-00014.
9. Brown SHJ, Kunnen CME, Duchoslav E et al. A comparison of patient matched meibum and tear lipidomes. Investig Ophthalmol Vis Sci. 2013; 54(12): 7417-23. http://doi.org/10.1167/iovs.13-12916.
10. Millar TJ, Schuett BS. The real reason for having a meibomian lipid layer covering the outer surface of the tear film – A review. Exp Eye Res. 2015; 137: 125-38. http://doi.org/10.1016/j.exer.2015.05.002.
11. Lam SM, Tong L, Reux B et al. Lipidomic analysis of human tear fl uid reveals structure-specific lipid alterations in dry eye syndrome. J Lipid Res. 2014; 55(2): 299-306. http://doi.org/10.1194/jlr.P041780.
12. Cheung SW, Cho P, Chan B et al. A comparative study of biweekly disposable contact lenses: Silicone hydrogel versus hydrogel. Clin Exp Optom. Published online 2007. http://doi.org/10.1111/j.1444-0938.2006.00107.x.
13. Nichols JJ. Deposition on silicone hydrogel lenses. Eye Contact Lens. 2013; 39(1): 20-3. http://doi.org/10.1097/ICL.0b013e318275305b.
14. Tighe BJ. A Decade of Silicone Hydrogel Development. Eye Contact Lens Sci Clin Pract. 2013; 39(1): 1. http://doi.org/10.1097/ICL.0b013e318275452b.
15. Lorentz H, Jones L. Lipid Deposition on Hydrogel Contact Lenses: How History Can Help Us Today. Optom Vis Sci. 2007; 84(4): 286-95. http://doi.org/10.1097/OPX.0b013e3180485d4b.
16. Jones L, Senchyna M, Glasier MA et al. Lysozyme and lipid deposition on silicone hydrogel contact lens materials. Eye Contact Lens. 2003; 29(1 suppl). http://doi.org/10.1097/00140068-200301001-00021.
17. Nichols JJ, Willcox MDP, Bron AJ et al. The TFOS International Workshop on Contact Lens Discomfort: Executive summary. Investig Ophthalmol Vis Sci. 2013; 54(11): TFOS7-TFOS13. http://doi.org/10.1167/iovs.13-13212.
18. Doughman DJ, Mobilia E, Drago D et al. The nature of “spots” on soft lenses. Ann Ophthalmol. 1975; 7(3): 345-8, 351-3.
19. Wedler FC. Analysis of biomaterials deposited on soft contact lenses. J Biomed Mater Res. 1977; 11(4): 525-35. http://doi.org/10.1002/ jbm.820110408.
20. Binder PS. Complications Associated With Extended Wear of Soft Contact Lenses. Ophthalmology. 1979; 86(6): 1093-101. http://doi.org/10.1016/S0161-6420(79)35420-3.
21. Rubey F. [Possibilities of examination on soft contact lenses (author’s transl)]. Klin Monbl Augenheilkd. 1978; 172(2): 222-5.
22. Hart DE, Tidsale RR, Sack RA. Origin and Composition of Lipid Deposits on Soft Contact Lenses. Ophthalmology. 1986; 93(4): 495-503. http://doi.org/10.1016/S0161-6420(86)33709-6.
23. Tripathi RC, Tripathi BJ, Ruben M. The Pathology of Soft Contact Lens Spoilage. Ophthalmology. 1980; 87(5): 365-80. http://doi.org/10.1016/S0161-6420(80)35222-6.
24. Hosaka S, Ozawa H, Tanzawa H et al. Analysis of deposits on high water content contact lenses. J Biomed Mater Res. 1983; 17(2): 261-74. http://doi.org/10.1002/jbm.820170205.
25. Lane BC. Spoliage of Hydrogel Contact Lenses by Lipid Deposits: Tear-film Potassium Depression, Fat, Protein, and Alcohol Consumption. Ophthalmology. 1987; 94(10): 1315-21. http://doi.org/10.1016/S0161-6420(87)80018-0.
26. Magran BL, Hurtado I. Soft contact lens damage: a one-year study in Caracas, Venezuela. CLAO J Off Publ Contact Lens Assoc Ophthalmol Inc. 1989; 15(4): 274-8.
27. Rapp J, Broich J. Lipid Deposits on Worn Soft Contact Lenses. CLAO J. 1984; 10(3): 235-40.
28. Caroline PJ, Robin JB, Gindi JJ et al. Microscopic and elemental analysis of deposits on extended wear soft contact lenses. CLAO J Off Publ Contact Lens Assoc Ophthalmol Inc. 1985; 11(4): 311-6.
29. Bowers RWJ, Tighe BJ. Studies of the ocular compatibility of hydrogels. White spot deposits-chemical composition and geological arrangement of components. Biomaterials. 1987; 8(3). http://doi.org/10.1016/0142-9612(87)90059-7.
30. Begley CG, Waggoner PJ. An analysis of nodular deposits on soft contact lenses. J Am Optom Assoc. 1991; 62(3): 208-14.
31. Franklin V, Horne A, Jones L et al. Early deposition trends on group I (Polymacon and Tetrafilcon A) and group III (Bufilcon A) materials. CLAO J Off Publ Contact Lens Assoc Ophthalmol Inc. 1991; 17(4): 244-8.
32. Mirejovsky D, Patel AS, Rodriguez DD et al. Lipid adsorption onto hydrogel contact lens materials. advantages of nile red over oil redo in visualization of lipids. Optom Vis Sci. 1991; 68(11): 858-64. http://doi.org/10.1097/00006324-199111000-00005.
33. Tripathi RC, Tripathi BJ, Silverman RA et al. Contact lens deposits and spoilage: Identification and management. Int Ophthalmol Clin. 1991; 31(2): 91-120. http://doi.org/10.1097/00004397-199103120-00012.
34. Bontempo AR, Rapp J. Lipid deposits on hydrophilic and rigid gas permeable contact lenses. Eye Contact Lens. 1994; 20(4): 242-5. http://doi.org/10.1097/00140068-199410000-00009.
35. Ho CH, Hlady V. Fluorescence assay for measuring lipid deposits on contact lens surfaces. Biomaterials. 1995; 16(6): 479-82. http://doi.org/10.1016/0142-9612(95)98821-U.
36. Jones L, Franklin V, Evans K et al. Spoilation and Clinical Performance of Monthly vs. Three Monthly Group II Disposable Contact Lenses. Optom Vis Sci. 1996; 73(1): 16-21. http://doi.org/10.1097/00006324-199601000-00003.
37. Jones L, Evans K, Sariri R et al. Lipid and protein deposition of N-vinyl pyrrolidone-containing group II and group IV frequent replacement contact lenses. CLAO J Off Publ Contact Lens Assoc Ophthalmol Inc. 1997; 23(2): 122-6.
38. Bontempo AR, Rapp J. Protein-lipid interaction on the surface of a hydrophilic contact lens in vitro. Curr Eye Res. 1997; 16(8): 776-81. http://doi.org/10.1076/ceyr.16.8.776.8985.
39. Prager MD, Quintana RP. Radiochemical studies on contact lens soilation. II. Lens uptake of cholesteryl oleate and dioleoyl phosphatidylcholine. J Biomed Mater Res. 1997; 37(2): 207-11. http://doi.org/10.1002/(SICI)1097-4636(199711)37:2<207::AID-JBM9>3.0.CO;2-V.
40. Maïssa C, Franklin V, Guillon M et al. Influence of contact lens material surface characteristics and replacement frequency on protein and lipid deposition. Optom Vis Sci. 1998; 75(9): 697-705. http://doi.org/10.1097/00006324-199809000-00026.
41. Hart E, Guillon M. Influence of contact lens material surface characteristics and replacement frequency on protein and lipid deposition (multiple letters). Optom Vis Sci. 1999; 76(9): 616-7. http://doi.org/10.1097/00006324-199909000-00016.
42. Lornetz H, Senchyna M, Jones L. Optimized Procedure for the Extraction of Lipid Deposits from Silicone–Hydrogel Contact Lenses. IOVS | ARVO Journals. 2004; 45(13): 1537. https://iovs.arvojournals.org/article.aspx?articleid=2407103 (access: 26.10.2020).
43. Maziarz EP, Stachowski MJ, Liu XM et al. Lipid Deposition on Silicone Hydrogel Lenses, Part I: Quantification of Oleic Acid, Oleic Acid Methyl Ester, and Cholesterol. Eye Contact Lens Sci Clin Pract. 2006; 32(6): 300-7. http://doi.org/10.1097/01.icl.0000224365.51872.6c.
44. Jones L, Subbaraman L, Rogers R et al. Surface treatment, wetting and modulus of silicone hydrogels. Optician. 2006; 232: 28-34.
45. Lorentz H, Rogers R, Jones L. The impact of lipid on contact angle wettability. Optom Vis Sci. 2007; 84(10): 946-53. http://doi.org/10.1097/OPX.0b013e318157a6c1.
46. Lira M, Santos L, Azeredo J et al; Real Oliveira MECD. Comparative study of silicone-hydrogel contact lenses surfaces before and after wear using atomic force microscopy. J Biomed Mater Res – Part B Appl Biomater. 2008; 85(2): 361-7. http://doi.org/10.1002/jbm.b.30954.
47. Iwata M, Ohno S, Kawai T et al. In vitro evaluation of lipids adsorbed on silicone hydrogel contact lenses using a new gas chromatography/ mass spectrometry analytical method. Eye Contact Lens. 2008; 34(5): 272-80. http://doi.org/10.1097/icl.0b013e318182f357.
48. Carney FP, Nash WL, Sentell KB. The adsorption of major tear film lipids in vitro to various silicone hydrogels over time. Investig Ophthalmol Vis Sci. 2008; 49(1): 120-4. http://doi.org/10.1167/iovs.07-0376.
49. Jones L, Senchyna M, Glasier M et al. Lysozyme and lipid deposition on silicone hydrogel contact lens materials. journals.lww.com. https://journals.lww.com/claojournal/Fulltext/2003/01001/Lysozyme_and_Lipid_Deposition_on_Silicone_Hydrogel.21.aspx (access: 11.09.2020).
50. Ngo W, Heynen M, Joyce E et al. Impact of protein and lipid on neutralization times of hydrogen peroxide care regimens. Eye Contact Lens. 2009; 35(6): 282-6. http://doi.org/10.1097/ICL.0b013e3181b93bd1.
51. Zhao Z, Carnt NA, Aliwarga Y et al. Care regimen and lens material influence on silicone hydrogel contact lens deposition. Optom Vis Sci. 2009; 86(3): 251-9. http://doi.org/10.1097/OPX.0b013e318196a74b.
52. Svitova TF, Lin MC. Tear lipids interfacial rheology: Effect of lysozyme and lens care solutions. Optom Vis Sci. 2010; 87(1): 10-20. http://doi.org/10.1097/OPX.0b013e3181c07908.
53. Pucker AD, Thangavelu M, Nichols JJ. Enzymatic quantification of cholesterol and cholesterol esters from silicone hydrogel contact lenses. Investig Ophthalmol Vis Sci. 2010; 51(6): 2949-54. http://doi.org/10.1167/iovs.08-3368.
54. Pucker AD, Thangavelu M, Nichols JJ. In vitro lipid deposition on hydrogel and silicone hydrogel contact lenses. Investig Ophthalmol Vis Sci. 2010; 51(12): 6334-40. http://doi.org/10.1167/iovs.10-5836.
55. Walther N, Gabriel M, Mowrey-McKee M. A comparison of various silicone hydrogel lenses; lipid and protein deposition as a result of daily wear. https://www.aaopt.org/detail/knowledge-base-article/comparison-various-silicone-hydrogel-lenses-lipid-and-protein-deposition-result-daily-wear (access: 9.09.2020).
56. Saville JT, Zhao Z, Willcox MDP et al. Detection and quantification of tear phospholipids and cholesterol in contact lens deposits: The effect of contact lens material and lens care solution. Investig Ophthalmol Vis Sci. 2010; 51(6): 2843-51. http://doi.org/10.1167/iovs.09-4609.
57. Zhao Z, Naduvilath T, Flanagan JL et al. Contact lens deposits, adverse responses, and clinical ocular surface parameters. Optom Vis Sci. 2010; 87(9): 669-74. http://doi.org/10.1097/OPX.0b013e3181ea1848.
58. Walther H, Lorentz H, Kay L et al. 20 The effect of in vitro lipid concentration on lipid deposition on silicone hydrogeland conventional hydrogel contact lens materials. Contact Lens Anterior Eye. 2011; 34: S21. http://doi.org/10.1016/s1367-0484(11)60099-4.
59. Lorentz H, Heynen M, Kay LMM et al. Contact lens physical properties and lipid deposition in a novel characterized artificial tear solution. Mol Vis. 2011; 17: 3392-405.
60. Heynen M, Lorentz H, Srinivasan S et al. Quantification of non-polar lipid deposits on senofilcon A Contact Lenses. Optom Vis Sci. 2011; 88(10): 1172-9. http://doi.org/10.1097/OPX.0b013e31822a5295.
61. Campbell D, Mann A, Hunt O et al. The significance of hand wash compliance on the transfer of dermal lipids in contact lens wear. Contact Lens Anterior Eye. 2012; 35(2): 71-6. http://doi.org/10.1016/j.clae.2011.11.004.
62. Omali NB, Zhu H, Zhao Z et al. Effect of cholesterol deposition on bacterial adhesion to contact lenses. Optom Vis Sci. 2011; 88(8): 950-8. http://doi.org/10.1097/OPX.0b013e31821cc683.
63. Pitt WG, Jack DR, Zhao Y et al. Loading and release of a phospholipid from contact lenses. Optom Vis Sci. 2011; 88(4): 502-6. http://doi.org/10.1097/OPX.0b013e31820e9ff8.
64. Pucker AD, Nichols JJ. A method of imaging lipids on silicone hydrogel contact lenses. Optom Vis Sci. 2012; 89(5). http://doi.org/10.1097/OPX.0b013e318253dea9.
65. Vishnubhatla S, Borchman D, Foulks GN. Contact lenses and the rate of evaporation measured in vitro; the influence of wear, squalene and wax. Contact Lens Anterior Eye. 2012; 35(6): 277-81. http://doi.org/10.1016/j.clae.2012.07.008.
66. Babaei Omali N, Proschogo N, Zhu H et al. Effect of phospholipid deposits on adhesion of bacteria to contact lenses. Optom Vis Sci. 2012; 89(1): 52-61. http://doi.org/10.1097/OPX.0b013e318238284c.
67. Ng A, Heynen M, Luensmann D et al. Impact of tear film components on lysozyme deposition to contact lenses. Optom Vis Sci. 2012; 89(4): 392-400. http://doi.org/10.1097/OPX.0b013e31824c0c4a.
68. Lorentz H, Heynen M, Khan W et al. The impact of intermittent air exposure on lipid deposition. Optom Vis Sci. 2012; 89(11): 1574-81. http://doi.org/10.1097/OPX.0b013e31826c6508.
69. Lorentz H, Heynen M, Trieu D et al. The impact of tear film components on in vitro lipid uptake. Optom Vis Sci. 2012; 89(6): 856-67. http://doi.org/10.1097/OPX.0b013e318255ddc8.
70. Pitt WG, Jack DR, Zhao Y et al. Transport of phospholipid in silicone hydrogel contact lenses. J Biomater Sci Polym Ed. 2012; 23(1-4): 527-41. http://doi.org/10.1163/092050611X554174.
71. Lorentz H, Heynen M, Tran H et al. Using an in vitro model of lipid deposition to assess the efficiency of hydrogen peroxide solutions to remove lipid from various contact lens materials. Curr Eye Res. 2012; 37(9): 777-86. http://doi.org/10.3109/02713683.2012.682636.
72. Brown SHJ, Huxtable LH, Willcox MDP et al. Automated surface sampling of lipids from worn contact lenses coupled with tandem mass spectrometry. Analyst. 2013; 138(5): 1316-20. http://doi.org/10.1039/c2an36189b.
73. Ng A, Heynen M, Luensmann D et al. Impact of tear film components on the conformational state of lysozyme deposited on contact lenses. J Biomed Mater Res – Part B Appl Biomater. 2013; 101(7): 1172-81. http://doi.org/10.1002/jbm.b.32927.
74. Pitt WG, Perez KX, Tam NK et al. Quantitation of cholesterol and phospholipid sorption on silicone hydrogel contact lenses. J Biomed Mater Res – Part B Appl Biomater. 2013; 101(8): 1516-23. http://doi.org/10.1002/jbm.b.32973.
75. Svitova TF, Lin MC. Racial variations in interfacial behavior of lipids extracted from worn soft contact lenses. Optom Vis Sci. 2013; 90(12): 1361-9. http://doi.org/10.1097/OPX.0000000000000098.
76. Walther H, Lorentz H, Heynen M et al. Factors that influence in vitro cholesterol deposition on contact lenses. Optom Vis Sci. 2013; 90(10): 1057-65. http://doi.org/10.1097/OPX.0000000000000022.
77. Nash WL, Gabriel MM. Ex vivo analysis of cholesterol deposition for commercially available silicone hydrogel contact lenses using a fluorometric enzymatic assay. Eye Contact Lens. 2014; 40(5): 277-82. http://doi.org/10.1097/ICL.0000000000000052.
78. Panaser A, Tighe BJ. Evidence of lipid degradation during overnight contact lens wear: Gas chromatography mass spectrometry as the diagnostic tool. Investig Ophthalmol Vis Sci. 2014; 55(3): 1797-804. http://doi.org/10.1167/iovs.13-12881.
79. Maissa C, Guillon M, Cockshott N et al. Contact lens lipid spoliation of hydrogel and silicone hydrogel lenses. Optom Vis Sci. 2014; 91(9): 1071-83. http://doi.org/10.1097/OPX.0000000000000341.
80. Cheung S, Lorentz H, Drolle E et al. Comparative study of lens solutions’ ability to remove tear constituents. Optom Vis Sci. 2014; 91(9): 1045-61. http://doi.org/10.1097/OPX.0000000000000340.
81. Tam NK, Pitt WG, Perez KX et al. The role of multi-purpose solutions in prevention and removal of lipid depositions on contact lenses. Contact Lens Anterior Eye. 2014; 37(6): 405-14. http://doi.org/10.1016/j.clae.2014.07.003.
82. Tam NK, Pitt WG, Perez KX et al. Prevention and removal of lipid deposits by lens care solutions and rubbing. Optom Vis Sci. 2014; 91(12): 1430-9. http://doi.org/10.1097/OPX.0000000000000419.
83. Bhamla MS, Nash WL, Elliott S et al. Influence of lipid coatings on surface wettability characteristics of silicone hydrogels. Langmuir. 2015; 31(13): 3820-8. http://doi.org/10.1021/la503437a.
84. Hagedorn S, Drolle E, Lorentz H et al. Atomic force microscopy and Langmuir-Blodgett monolayer technique to assess contact lens deposits and human meibum extracts. J Optom. 2015; 8(3): 187-99. http://doi.org/10.1016/j.optom.2014.12.003.
85. Pitt WG, Zhao Y, Jack DR et al. Extended elution of phospholipid from silicone hydrogel contact lenses. J Biomater Sci Polym Ed. 2015; 26(4): 224-34. http://doi.org/10.1080/09205063.2014.994947.
86. Walther H, Subbaraman L, Jones LW. In vitro cholesterol deposition on daily disposable contact lens materials. Optom Vis Sci. 2016; 93(1): 36-41. http://doi.org/10.1097/OPX.0000000000000749.
87. Peng C-C, Fajardo NP, Razunguzwa T et al. In Vitro Spoilation of Silicone-Hydrogel Soft Contact Lenses in a Model-Blink Cell. Optom Vis Sci. 2015; 92(7): 768-80. http://doi.org/10.1097/OPX.0000000000000625.
88. Silva D, Fernandes AC, Nunes TG et al. The effect of albumin and cholesterol on the biotribological behavior of hydrogels for contact lenses. Acta Biomater. 2015; 26: 184-94. http://doi.org/10.1016/j.actbio.2015.08.011.
89. Bassyouni RH, Kamel Z, Abdelfattah MM et al. Cinnamon oil: A possible alternative for contact lens disinfection. Contact Lens Anterior Eye. 2016; 39(4): 277-83. http://doi.org/10.1016/j.clae.2016.01.001.
90. Wang MTM, Ganesalingam K, Loh CS et al. Compatibility of phospholipid liposomal spray with silicone hydrogel contact lens wear. Contact Lens Anterior Eye. 2017; 40(1): 53-8. http://doi.org/10.1016/j.clae.2016.11.002.
91. Schuett BS, Millar TJ. An Experimental Model to Study the Impact of Lipid Oxidation on Contact Lens Deposition In Vitro. Curr Eye Res. 2017; 42(9): 1220-7. http://doi.org/10.1080/02713683.2017.1307416.
92. Babaei Omali N, Lada M, Lakkis C et al. Lipid Deposition on Contact Lenses when Using Contemporary Care Solutions. Optom Vis Sci. 2017; 94(9): 919-27. http://doi.org/10.1097/OPX.0000000000001114.
93. Walther H, Phan CM, Subbaraman LN et al. Differential deposition of fluorescently tagged cholesterol on commercial contact lenses using a novel in vitro eye model. Transl Vis Sci Technol. 2018; 7(2). http://doi.org/10.1167/tvst.7.2.18.
94. Walther H, Subbaraman LN, Jones L. Efficacy of Contact Lens Care Solutions in Removing Cholesterol Deposits from Silicone Hydrogel Contact Lenses. Eye Contact Lens. 2019; 45(2): 105-11. http://doi.org/10.1097/ICL.0000000000000547.
95. Luensmann D, Omali NB, Suko A et al. Kinetic Deposition of Polar and Non-polar Lipids on Silicone Hydrogel Contact Lenses. Curr Eye Res. 2020; 1-7 http://doi.org/10.1080/02713683.2020.1755696.
96. Qiao H, Luensmann D, Heynen M et al. In vitro evaluation of the location of cholesteryl ester deposits on monthly replacement silicone hydrogel contact lens materials. Clin Ophthalmol. 2020; 14: 2821-8. http://doi.org/10.2147/OPTH.S270575.
97. Shows A, Redfern RL, Sickenberger W et al. Lipid Analysis on Block Copolymer-containing Packaging Solution and Lens Care Regimens: A Randomized Clinical Trial. Optom Vis Sci. 2020; 97(8): 565-72. http://doi.org/10.1097/OPX.0000000000001553.
98. Omali NB, Subbaraman LN, Heynen M et al. Lipid deposition on contact lenses in symptomatic and asymptomatic contact lens wearers. Contact Lens Anterior Eye. Published online 2020. http://doi.org/10.1016/j.clae.2020.05.006.
99. Brown SHJ, Kunnen CME, Papas EB et al. Intersubject and Interday Variability in Human Tear and Meibum Lipidomes: A Pilot Study. Ocul Surf. 2016; 14(1): 43-8. http://doi.org/10.1016/j.jtos.2015.08.005.
100. Suliński T, Gapiński J. Badanie barier dyfuzyjnych w polimerowo-hydrożelowych matrycach na przykładzie dyfuzji wybranego leku znieczulajacego w sylikonowo-hydrożelowych soczewkach kontaktowych. Optyka. 2013; 6(25): 36-41.