MikroRNA w patogenezie jaskry Artykuł przeglądowy

##plugins.themes.bootstrap3.article.main##

Karolina Gasińska
Ewa Kosior-Jarecka
Tomasz Żarnowski

Abstrakt

MikroRNA to krótkie cząsteczki kwasu rybonukleinowego regulujące ekspresję genów. Wykazano udział różnych rodzajów mikroRNA w patogenezie jaskry. Większość z nich wpływa na beleczkowanie w kącie przesączania, powodując nadmierne odkładanie się macierzy zewnątrzkomórkowej i blokowanie drogi odpływu cieczy wodnistej. Cząsteczki mikroRNA zmieniają kurczliwość komórek beleczkowania, powodują spadek jego przepuszczalności i wzrost ciśnienia wewnątrzgałkowego. Uczestniczą w regulacji apoptozy komórek beleczkowania i komórek zwojowych siatkówki. Cząsteczki mikroRNA mogą być biomarkerami jaskry, a w przyszłości stać się celem terapii genowej.

Pobrania

Dane pobrania nie są jeszcze dostepne

##plugins.themes.bootstrap3.article.details##

Jak cytować
1.
Gasińska K, Kosior-Jarecka E, Żarnowski T. MikroRNA w patogenezie jaskry. Ophthatherapy [Internet]. 9 grudzień 2020 [cytowane 3 lipiec 2024];7(4):277-86. Dostępne na: https://journalsmededu.pl/index.php/ophthatherapy/article/view/1108
Dział
Diagnostyka

Bibliografia

1. Filip A. MikroRNA: nowe mechanizmy regulacji ekspresji genów. Post Bioch. 2007; 53: 413-9.
2. Świstek J, Kwiecień J, Starska K. Rola wybranych microRNA w procesie neoplazmatycznym. Otorynolaryngologia. 2017; 16: 81-7.
3. Kopczyński P, Krawczyński MR. Rola onkogenów i genów supresji nowotworów w onkogenezie. Now Lek. 2012; 81: 679-81.
4. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75: 843-54.
5. Sosińska P, Mikuła-Pietrasik J, Książek K. Molekularne podstawy komórkowego starzenia: fenomen Hayflicka 50 lat później. Postepy Hig Med Dosw. 2016; 70: 231-42.
6. Dellago H, Bobbili MR, Grillari J. MicroRNA-17-5p: At the Crossroads of Cancer and Aging – A Mini-Review. Gerontology. 2017; 63: 20-8.
7. Kumar S, Vijayan M, Bhatti JS et al. MicroRNAs as Peripheral Biomarkers in Aging and Age-Related Diseases. Prog Mol Biol Transl. 2017; 146: 47-94.
8. Juźwik CA, S. Drake S, Zhang Y et al. microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog Neurobiol. 2019; 182: 101664. https://doi.org/10.1016/j.pneurobio.2019.101664.
9. Lagos-Quintana M, Rauhut R, Meyer J et al. New microRNAs from mouse and human. RNA. 2003; 9: 175-9.
10. Raghunath A, Perumal E. Micro-RNAs and Their Roles in Eye Disorders. Ophthalmic Res. 2015; 53: 169-86.
11. Woeller CF, Roztocil E, Hammond C et al. TSHR Signaling Stimulates Proliferation Through PI3K/Akt and Induction of miR-146a and miR-155 in Thyroid Eye Disease Orbital Fibroblasts. Invest Ophthalmol Vis Sci. 2019; 60: 4336-45.
12. Puccetti A, Pelosi A, Fiore PF et al. MicroRNA Expression Profiling in Behçet’s Disease. J Immunol Res. 2018; 2018: 2405150.
13. Chang R, Yi S, Tan X et al. MicroRNA-20a-5p suppresses IL-17 production by targeting OSM and CCL1 in patients with Vogt-Koyanagi-Harada disease. Br J Ophthalmol. 2018; 102: 282-90.
14. Pilson Q, Smith S, Jefferies CA et al. miR-744-5p contributes to ocular inflammation in patients with primary Sjogrens Syndrome. Sci Rep. 2020; 10: 7484.
15. Poczęta M, Nowak E, Bieg D et al. Epigenetic modifications and gene expression in cancerogenesis. Ann Acad Med Siles. 2018; 72: 80-9.
16. Quigley HA. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006; 90: 262-7.
17. Wróbel-Dudzińska D, Kosior-Jarecka E, Łukasik U et al. Risk Factors in Normal-Tension Glaucoma and High-Tension Glaucoma in relation to Polymorphisms of Endothelin-1 Gene and Endothelin-1 Receptor Type A Gene. J Ophthalmol. 2015; 2015: 1-12.
18. Weinreb RN, Aung T, Medeiros FA. The Pathophysiology and Treatment of Glaucoma: A Review. JAMA. 2014; 311: 1901-11.
19. Jayaram H, Phillips JI, Lozano DC et al. Comparison of MicroRNA Expression in Aqueous Humor of Normal and Primary Open-Angle Glaucoma Patients Using PCR Arrays: A Pilot Study. Invest Ophthalmol Vis Sci. 2017; 58: 2884-90.
20. Drewry MD, Challa P, Kuchtey JG et al. Differentially expressed microRNAs in the aqueous humor of patients with exfoliation glaucoma or primary open-angle glaucoma. Hum Mol Genet. 2018; 27: 1263-75.
21. Stamer WD, Clark AF. The many faces of the trabecular meshwork cell. Exp Eye Res. 2017; 158: 112-23.
22. Vranka JA, Kelley MJ, Acott TS et al. Extracellular matrix in the trabecular meshwork: Intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res. 2015; 133: 112-25.
23. Kasetti RB, Maddineni P, Millar JC et al. Increased synthesis and deposition of extracellular matrix proteins leads to endoplasmic reticulum stress in the trabecular meshwork. Sci Rep. 2017; 7: 14951.
24. Nita M, Grzybowski A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid Med Cell Longev. 2016; 2016: 1-23.
25. Sarniak A, Lipińska J, Tytman K et al. Endogenne mechanizmy powstawania reaktywnych form tlenu (ROS). Postepy Hig Med Dosw. 2016; 70: 1150-64.
26. Izzotti A, Saccà SC, Longobardi M et al. Sensitivity of ocular anterior chamber tissues to oxidative damage and its relevance to the pathogenesis of glaucoma. Invest Ophthalmol Vis Sci. 2009; 50: 5251-8.
27. Ferreira SM, Lerner SF, Brunzini R et al. Oxidative stress markers in aqueous humor of glaucoma patients. Am J Ophthalmol. 2004; 137: 62-9.
28. Mozaffarieh M, Grieshaber MC, Flammer J. Oxygen and blood flow: players in the pathogenesis of glaucoma. Mol Vis. 2008; 14: 224-33.
29. Braunger BM, Fuchshofer R, Tamm ER. The aqueous humor outflow pathways in glaucoma: A unifying concept of disease mechanisms and causative treatment. Eur J Pharm Biopharm. 2015; 95: 173-81.
30. Li G, Luna C, Qiu J et al. Targeting of Integrin β1 and Kinesin 2α by MicroRNA 183. J Biol Chem. 2010; 285: 5461-71.
31. Luna C, Li G, Qiu J et al. Role of miR-29b on the regulation of the extracellular matrix in human trabecular meshwork cells under chronic oxidative stress. Mol Vis. 2009; 15: 2488-97.
32. Villarreal G, Oh D-J, Kang MH et al. Coordinated Regulation of Extracellular Matrix Synthesis by the MicroRNA-29 Family in the Trabecular Meshwork. Invest Ophthalmol Vis Sci. 2011; 52: 3391-7.
33. Fuchshofer R, Stephan DA, Russell P et al. Gene expression profiling of TGFβ2- and/or BMP7-treated trabecular meshwork cells: Identification of Smad7 as a critical inhibitor of TGF-β2 signaling. Exp Eye Res. 2009; 88: 1020-32.
34. Yin R, Chen X. Regulatory effect of miR‑144‑3p on the function of human trabecular meshwork cells and fibronectin‑1. Exp Ther Med. 2019; 18: 647-53.
35. Luna C, Li G, Qiu J et al. MicroRNA-24 regulates the processing of latent TGFβ1 during cyclic mechanical stress in human trabecular meshwork cells through direct targeting of FURIN. J Cell Physiol. 2011; 226: 1407-14.
36. Luna C, Li G, Huang J et al. Regulation of Trabecular Meshwork Cell Contraction and Intraocular Pressure by miR-200c. PLoS One. 2012; 7: e51688.
37. Li X, Zhao F, Xin M et al. Regulation of intraocular pressure by microRNA cluster miR-143/145. Sci Rep. 2017; 7: 915.
38. Klein BEK. Intraocular pressure and systemic blood pressure: longitudinal perspective: the Beaver Dam Eye Study. Brit J Ophthalmol. 2005; 89: 284-7.
39. Skrzypecki J, Grabska-Liberek I, Przybek J et al. A common humoral background of intraocular and arterial blood pressure dysregulation. Curr Med Res Opin. 2018; 34: 521-9.
40. Wang X, Li Z, Bai J et al. MiR‑17‑5p regulates the proliferation and apoptosis of human trabecular meshwork cells by targeting phosphatase and tensin homolog. Mol Med Report. 2019; 19: 3132-8.
41. Tezel G. Oxidative stress in glaucomatous neurodegeneration: Mechanisms and consequences. Prog Retin Eye Res. 2006; 25: 490-513.
42. Izzotti A, Ceccaroli C, Longobardi M et al. Molecular Damage in Glaucoma: from Anterior to Posterior Eye Segment. The MicroRNA Role. MiRNA. 2015; 4: 3-17.
43. Pałasz E, Bąk A, Gąsiorowska A et al. The role of trophic factors and inflammatory processes in physical activity-induced neuroprotection in Parkinson’s disease. Postepy Hig Med Dosw. 2017; 71: 713-26.
44. Czajkowski J, Depczyńska M, Hein K et al. Rola naczyniowych czynników ryzyka i ich występowanie w polskiej populacji chorych na jaskrę. Wyniki 14 208 badań ankietowych. Okulistyka – wyd. spec 2003; 1-8.
45. Parisi V, Oddone F, Ziccardi L et al. Citicoline and Retinal Ganglion Cells: Effects on Morphology and Function. Curr Neuropharmacol. 2018; 16: 919-32.
46. Kong N, Lu X, Li B. Downregulation of microRNA-100 protects apoptosis and promotes neuronal growth in retinal ganglion cells. BMC Mol Biol. 2014; 15: 25.
47. Machaliński B, Łażewski-Banaszak P, Dąbkowska E et al. Rola czynników neurotroficznych w procesach regeneracji układu nerwowego. Neurol Neurochir Pol. 2012; 46: 579-90.
48. Chitranshi N, Dheer Y, Abbasi M et al. Glaucoma Pathogenesis and Neurotrophins: Focus on the Molecular and Genetic Basis for Therapeutic Prospects. Curr Neuropharmacol. 2018; 16: 1018-35.
49. Saccà SC, Pulliero A, Izzotti A. The Dysfunction of the Trabecular Meshwork During Glaucoma Course. J Cell Physiol. 2015; 230: 510-25.
50. Van den Pol AN. Neuropeptide transmission in brain circuits. Neuron. 2012; 76: 98-115.
51. Duan X, Lu Q, Xue P et al. Proteomic analysis of aqueous humor from patients with myopia. Mol Vis. 2008; 14: 370-7.
52. Wang LM, Dong LJ, Liu X et al. Proteomic analysis of aqueous humor in acute primary angle-closure glaucoma. Zhonghua Yan Ke Za Zhi. 2019; 55: 687-94.
53. Johnson M, McLaren JW, Overby DR. Unconventional aqueous humor outflow: A review. Exp Eye Res. 2017; 158: 94-111.
54. Bosco A, Crish SD, Steele MR et al. Early reduction of microglia activation by irradiation in a model of chronić glaucoma. PLoS One. 2012; 7: e43602.
55. Tezel G, Wax MB. Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J Neurosci. 2000; 20: 8693-700.
56. Nakazawa T, Nakazawa C, Matsubara A et al. Tumor Necrosis Factor- Mediates Oligodendrocyte Death and Delayed Retinal Ganglion Cell Loss in a Mouse Model of Glaucoma. J Neurosci. 2006; 26: 12633-41.
57. Echevarria F, Walker C, Abella S et al. Stressor-dependent Alterations in Glycoprotein 130: Implications for Glial Cell Reactivity, Cytokine Signaling and Ganglion Cell Health in Glaucoma. J Clin Exp Ophthalmol. 2013; 4: 1000286.
58. Mossböck G, Weger M, Faschinger C et al. Role of functional single nucleotide polymorphisms of MMP1, MMP2, and MMP9 in open angle glaucomas. Mol Vis. 2010; 16: 1764-70.
59. Toda N, Nakanishitoda M. Nitric oxide: Ocular blood flow, glaucoma, and diabetic retinopathy. Prog Retin Eye Res. 2007; 26: 205-38.
60. Goswami R, Subramanian G, Silayeva L et al. Gene Therapy Leaves a Vicious Cycle. Front Oncol. 2019; 9: 297.