Effects of age and cigarette smoking on right ventricle structure and function Artykuł oryginalny
##plugins.themes.bootstrap3.article.main##
Abstrakt
Wstęp: Celem badania była ocena wpływu wieku na parametry echokardiograficzne u osób niepalących tytoniu i palących go.
Metodyka: Badana grupa liczyła 310 kolejnych pacjentów w wieku 54,5 (18–91) roku. Wśród nich było 20% czynnych palaczy i 32,6% palących w przeszłości.
Wyniki: Do modelu regresji weszły następujące zmienne: dla wymiaru prawej komory tylko wiek, dla wymiaru prawego przedsionka w osi długiej i dla jego pola tylko wiek i płeć, podczas gdy dla wymiaru w osi krótkiej były to wiek i palenie tytoniu; tylko wiek pozwalał przewidywać czas przyspieszenia wyrzutu do tętnicy płucnej (Act), wychylenie płaszczyzny pierścienia zastawki trójdzielnej w skurczu (TAPSE) i maksymalny gradient niedomykalności trójdzielnej (TIPG); również tylko wiek pozwalał przewidywać prędkość wczesnorozkurczowej fazy napływu trójdzielnego (rE), a wiek i płeć – prędkość wczesnorozkurczowej fazy ruchu pierścienia trójdzielnego (rE’) i wskaźnik rE/E’.
Wnioski: Mimo że większe jamy prawej połowy serca stwierdzono u palaczy, wydaje się, że jest to związane głównie z procesem starzenia się serca, a wpływ nikotyny dotyczy tylko przebudowy prawego przedsionka. W grupie kobiet związane z wiekiem zmniejszenie TAPSE i Act oraz zwiększenie TIPG były wyraźniejsze u czynnie palących tytoń. W przypadku funkcji rozkurczowej prawej komory najsilniejsze korelacje obserwowano w grupie kobiet palących tytoń w przeszłości, co może wskazywać na dominującą rolę procesu starzenia się serca.
Pobrania
##plugins.themes.bootstrap3.article.details##
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne 4.0 Międzynarodowe.
Copyright: © Medical Education sp. z o.o. This is an Open Access article distributed under the terms of the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). License (https://creativecommons.org/licenses/by-nc/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Address reprint requests to: Medical Education, Marcin Kuźma (marcin.kuzma@mededu.pl)
Bibliografia
2. Alshehri A.M., Azoz A.M., Shaheen H.A. et al.: Acute effects of cigarette smoking on the cardiac diastolic functions. J. Saudi Heart Assoc. 2013; 25: 173-179.
3. Barutcu I., Esen A.M., Kaya D. et al.: Effect of acute cigarette smoking on left and right ventricle filling parameters: a conventional and tissue Doppler echocardiographic study in healthy participants. Angiology 2008; 59: 312-316.
4. Kasikcioglu E., Elitok A., Onur I. et al.: Acute effects of smoking on coronary flow velocity reserve and ventricular diastolic functions. Int. J. Cardiol. 2008; 129: 18-20.
5. Ilgenli T.F., Akpinar O.: Acute effects of smoking on right ventricular function. A tissue Doppler imaging study on healthy subjects. Swiss Med. Wkly. 2007; 137: 91-96.
6. Karakaya O., Barutcu I., Esen A.M. et al.: Acute smoking-induced alterations in Doppler echocardiographic measurements in chronic smokers. Tex. Heart Inst. J. 2006; 33: 134-138.
7. Giacomin E., Palmerini E., Ballo P. et al.: Acute effects of caffeine and cigarette smoking on ventricular long-axis function in healthy subjects. Cardiovasc. Ultrasound. 2008; 4: 9.
8. Gulel O., Soylu K., Yazici M. et al.: Longitudinal diastolic myocardial functions are affected by chronic smoking in young healthy people: a study of color tissue Doppler imaging. Echocardiography 2007; 24: 494-498.
9. Eroglu E., Aydin S., Yalniz F. et al.: Chronic cigarette smoking affects left and right ventricular long-axis function in healthy young subjects: a Doppler myocardial imaging study. Echocardiography 2009; 26: 1019-1025.
10. Gidding S.S., Xie X., Liu K. et al.: Cardiac function in smokers and nonsmokers: the CARDIA study. The Coronary Artery Risk Development in Young Adults Study. J. Am. Coll. Cardiol. 1995; 26: 211-216.
11. Balcioğlu A.S., Durakoğlugil M.E., Okyay K. et al.: Characterization of echocardiographic measures of cardiac structure and function in healthy octogenarians. Echocardiography 2014; 31: 1062-1070.
12. Li S.Y., Du M., Dolence E.K. et al.: Aging induces cardiac diastolic dysfunction, oxidative stress, accumulation of advanced glycation endproducts and protein modification. Aging Cell. 2005; 4: 57-64.
13. Cheitlin M.D.: Cardiovascular physiology-changes with aging. Am. J. Geriatr. Cardiol. 2003; 12: 9-13.
14. Taylor B.J., Johnson B.D.: The pulmonary circulation and exercise responses in the elderly. Semin. Respir. Crit. Care Med. 2010; 31: 528-538.
15. Davidson W.R. Jr, Fee E.C.: Influence of aging on pulmonary hemodynamics in a population free of coronary artery disease. Am. J. Cardiol. 1990; 65: 1454-1458.
16. Laszlo R., Baumann T., Konz H. et al.: Right ventricular function assessed by tissue Doppler echocardiography in older subjects without evidence for structural cardiac disease. Aging Clin. Exp. Res. 2017; 29: 557-562.
17. Laszlo R., Baumann T., Konz H. et al.: Echocardiographic B-mode evaluation of the right heart in older people: The ActiFE Study. Arch. Gerontol. Geriatr. 2016; 67: 145-152.
18. Henein M., Waldenström A., Mörner S., Lindgvist P.: The normal impact of age and gender on right heart structure and function. Echocardiography 2014; 31: 5-11.
19. Chiha J., Boyd A., Thomas L.: Does normal ageing alter right ventricular relaxation properties? A tissue Doppler study. Heart Lung Circ. 2010; 19: 406-412.
20. Chia E.M., Hsieh C.H., Boyd A. et al.: Effects of age and gender on right ventricular systolic and diastolic function using two-dimensional speckle-tracking strain. J. Am. Soc. Echocardiogr. 2014; 27: 1079-1086.
21. Innelli P., Esposito R., Olibet M. et al.: The impact of ageing on right ventricular longitudinal function in healthy subjects: a pulsed tissue Doppler study. Eur. J. Echocardiogr. 2009; 10: 491-498.
22. Ferrara F., Rudski LG., Vriz O. et al.: Physiologic correlates of tricuspid annular plane systolic excursion in 1168 healthy subjects. Int. J. Cardiol. 2016; 223: 736-743.
23. Kukulski T., Hübbert L., Arnold M. et al.: Normal regional right ventricular function and its change with age: a Doppler myocardial imaging study. J. Am. Soc. Echocardiogr. 2000; 13: 194-204.
24. Watanabe S., Suzuki N., Kudo A. et al.: Influence of aging on cardiac function examined by echocardiography. Tohoku J. Exp. Med. 2005; 207: 13-19.
25. Klein A.L., Leung D.Y., Murray R.D. et al.: Effects of age and physiologic variables on right ventricular filling dynamics in normal subjects. Am. J. Cardiol. 1999; 84: 440-448.
26. Iwase M., Nagata K., Izawa H. et al.: Age-related changes in left and right ventricular filling velocity profiles and their relationship in normal subjects. Am. Heart J. 1993; 126: 419-426.
27. Hayashi S., Hamada Y., Nishio S. et al.: Age- and gender-specific changes of tricuspid annular motion velocities in normal hearts. J. Cardiol. 2015; 65: 397-402.
28. Van de Veire N.R., De Backer J., Ascoop A.K. et al.: Echocardiographically estimated left ventricular end-diastolic and right ventricular systolic pressure in normotensive healthy individuals. Int. J. Cardiovasc. Imaging 2006; 22: 633-641.
29. Topilsky Y., Khanna A., Le Tourneau T. et al.: Clinical context and mechanism of functional tricuspid regurgitation in patients with and without pulmonary hypertension. Circ. Cardiovasc. Imaging 2012; 5: 314-323.
30. Mutlak D., Lessick J., Reisner SA. et al.: Echocardiography-based spectrum of severe tricuspid regurgitation: the frequency of apparently idiopathic tricuspid regurgitation. J. Am. Soc. Echocardiogr. 2007; 20: 405-408.
31. Kawut S.M., Barr R.G., Lima J.A. et al.: Right ventricular structure is associated with the risk of heart failure and cardiovascular death: the Multi-Ethnic Study of Atherosclerosis-right ventricle study. Circulation 2012; 126: 1681-1688.
32. Lam C.S., Borlaug B.A., Kane G.C. et al.: Age-associated increases in pulmonary artery systolic pressure in the general population. Circulation 2009; 119: 2663-2670.
33. Leibowitz D., Gilon D., Jacobs J.M. et al.: Pulmonary artery systolic pressure and mortality in the oldest old. Cardiology 2014; 129: 111-116.
34. Lang R.M., Bierig M., Devereux R.B. et al.: Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the ESC. J. Am. Soc. Echocardiogr. 2005; 18: 1440-1463.
35. Rudski L.G., Lai W.W., Afilalo J. et al.: Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the ESC, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 2010; 23: 685-713.
36. Schiano-Lomoriello V., Esposito R., Santoro C. et al.: Early markers of right heart involvement in regular smokers by Pocket Size Imaging Device. Cardiovasc. Ultrasound. 2015; 13: 33.
37. Svedenhag J., Larsson T.P., Lindqvist P. et al.: Individual reference values for 2D echocardiographic measurements. The Stockholm – Umeå Study. Clin. Physiol. Funct. Imaging 2015; 35: 275-282.
38. Masugata H., Senda S., Okuyama H. et al.: Age-related decrease in inferior vena cava diameter measured with echocardiography. Tohoku J. Exp. Med. 2010; 222: 141-147.
39. Gignon L., Roger C., Bastide S. et al.: Influence of Diaphragmatic Motion on Inferior Vena Cava Diameter Respiratory Variations in Healthy Volunteers. Anesthesiology 2016; 124: 1338-1346.
40. Gui J., Guo J., Nong F. et al.: Impact of individual characteristics on sonographic IVC diameter and the IVC diameter/aorta diameter index. Am. J. Emerg. Med. 2015; 33: 1602-1605.
41. Moreno F.L., Hagan A.D., Holmen J.R. et al.: Evaluation of size and dynamics of the inferior vena cava as an index of right-sided cardiac function. Am. J. Cardiol. 1984; 53: 579-585.
42. Taniguchi T., Ohtani T., Nakatani S. et al.: Impact of Body Size on Inferior Vena Cava Parameters for Estimating Right Atrial Pressure: A Need for Standardization? J. Am. Soc. Echocardiogr. 2015; 28: 1420-1427.
43. Waterbrook A.L., Shah A., Jannicky E. et al.: Sonographic inferior vena cava measurements to assess hydration status in college football players during preseason camp. J. Ultrasound Med. 2015; 34: 239-245.
44. Panebianco N.L., Shofer F., Cheng A. et al.: The effect of supine versus upright patient positioning on inferior vena cava metrics. Am. J. Emerg. Med. 2014; 32: 1326-1329.
45. Mookadam F., Warsame T.A., Yang H.S. et al.: Effect of positional changes on inferior vena cava size. Eur. J. Echocardiogr. 2011; 12: 322-325.
46. Sonoo T., Nakamura K., Ando T. et al.: Prospective analysis of cardiac collapsibility of inferior vena cava using ultrasonography. J. Crit. Care. 2015; 30: 945-948.