Pattern electroretinography and photopic negative response in glaucoma diagnostics

Main Article Content

Wojciech Lubiński
Marta Kirkiewicz
Joanna Karaśkiewicz

Abstract

The aim of this article is to present data from recent literature and our own experience with respect to the role of pattern electroretinography (PERG) and photopic negative response (PhNR) in glaucoma diagnosis. The results of these studies show that PERG amplitude reduction is an indicator of conversion to manifest glaucoma and a predictor of increased rate of progression of retinal nerve fiber layer (RNFL) thinning in patients with glaucoma suspicion. PERG and PhNR are capable of detecting decreased retinal function when the results of routine diagnostic examinations are still within normal ranges or borderline. PERG and PhNR may also serve to confirm retinal function improvement. Both tests may also serve as an indicator of well-selected IOP-lowering therapy. In patients suspected of normal-tension glaucoma, PERG may be the only indicator of RGCs dysfunction and may be the diagnostic basis for the inclusion of IOP-lowering therapy.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Lubiński W, Kirkiewicz M, Karaśkiewicz J. Pattern electroretinography and photopic negative response in glaucoma diagnostics. Ophthatherapy [Internet]. 2017Jun.30 [cited 2025Jan.22];4(2):73-0. Available from: https://journalsmededu.pl/index.php/ophthatherapy/article/view/968
Section
Articles

References

1. Bode SF, Jehle T, Bach M. Pattern electroretinogram in glaucoma suspects: new findings from a longitudinal study. Invest Ophthalmol Vis Sci. 2011; 52: 4300-6.
2. Bach M, Unsoeld AS, Philippin H et al. Pattern ERG as an early glaucoma indicator in ocular hypertension: a long-term, prospective study. Invest Ophthalmol Vis Sci. 2006; 47: 4881-7.
3. Viswanathan S, Frishman LJ, Robson JG et al. The Photopic Negative Response of the Flash Electroretinogram in Primary Open Angle Glaucoma. Invest Ophthalmol Vis Sci. 2001; 42: 514-22.
4. Machida S, Gotoh Y, Toba Y et al. Correlation between Photopic Negative Response and Retinal Layer Thickness and Optic Disc Topography in Glaucomatous Eyes. Invest Ophthamol Vis Sci. 2008; 49: 2201-7.
5. Fortune B, Bearse MA Jr, Cioffi GA et al. Selective loss of an oscillatory component from temporal retinal multifocal ERG responses in glaucoma. Invest Ophthalmol Vis Sci. 2002; 43: 2638-47.
6. Bobak P, Bodis-Wollner I, Harnois C et al. Pattern electro-retinograms and visual-evoked potentials in glaucoma and multiple sclerosis. Am J Ophthalmol. 1983; 96: 72-83.
7. Stiefelmeyer S, Neubauer AS, Berninger T et al. The multifocal pattern electroretinogram in glaucoma. Vision Res. 2004; 44: 103-12.
8. Porciatti V, Ventura LM. Normative data for a userfriendly paradigm for pattern electroretinogram recording. Ophthalmology. 2004; 111: 161-8.
9. Bach M, Speidel-Fiaux A. Pattern electroretinogram in glaucoma and ocular hypertension. Doc Ophthalmol. 1989; 73: 173-81.
10. Bach M, Brigell MG, Hawlina M et al. ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol. 2013; 126: 1-7.
11. Arai M, Yoshimura N, Sakaue H et al. 3-year follow-up study of ocular hypertension by pattern electroretinogram. Ophthalmologica. 1993; 207: 187-95.
12. Porciatti V, Falsini B, Brunori S et al. Pattern electroretinogram as a function of spatial frequency in ocular hypertension and early glaucoma. Doc Ophthalmol. 1987; 65: 349-55.
13. Papst N, Bopp M, Schnaudigel OE. The pattern evoked electroretinogram associated with elevated intraocular pressure. Graefes Arch Clin Exp Ophthalmol. 1984; 222: 34-7.
14. Lubiński W, Gosławski W, Penkala K et al. Funkcja bioelektryczna komórek zwojowych siatkówki mierzona badaniem PERG u pacjentów z nadciśnieniem ocznym. Klin Oczna. 2011; 113: 122-6.
15. Kass MA, Heuer DK, Higginbotham EJ et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002; 120: 701-13.
16. Karaśkiewicz J, Drobek-Słowik M, Lubiński W. Pattern electroretinogram (PERG) in the early diagnosis of normal-tension preperimetric glaucoma: a case report. Doc Ophthalmol. 2014; 128: 53-8.
17. Banitt MR, Ventura LM, Feuer WJ et al. Progressive loss of retinal ganglion cell function precedes structural loss by several years in glaucoma suspects. Invest Ophthalmol Vis Sci. 2013; 54: 2346-52.
18. Bach M, Hiss P, Röver J. Check-size specific changes of pattern electroretinogram in patients with early open-angle glaucoma. Doc Ophthalmol. 1988; 69: 315-22.
19. Pfeiffer N, Bach M. The pattern electroretinogram in glaucoma and ocular hypertension: a cross-sectional and longitudinal study. Ger J Ophthalmol. 1992; 1: 35-40.
20. Preiser D, Lagrèze WA, Bach M et al. Photopic negative response versus pattern electroretinogram in early glaucoma. Invest Ophthalmol Vis Sci. 2013; 54: 1182-91.
21. Karaśkiewicz J, Penkala K, Mularczyk M, Lubiński W. Evaluation of retinal ganglion cell function after intraocular pressure reduction measured by pattern electroretinogram in patients with primary open-angle glaucoma. Doc Ophthalmol. 2017; 134(2): 89-97. https://doi.org/10.1007/s10633-017-9575-0.
22. North RV, Jones AL, Drasdo N et al. Electrophysiological evidence of Early Functional Damage in Glaucoma and Ocular Hypertension. Invest Ophthalmol Vis Sci. 2010; 51: 1216-22.
23. Kirkiewicz M, Lubiński W, Penkala K. Photopic negative response of full-field electroretinography in patients with different stages of glaucomatous optic neuropathy. Doc Ophthalmol. 2016; 132(1): 57-65. https://doi.org/10.1007/s10633-016-9528-z.
24. Machida S, Tamada K, Oikawa T et al. Comparison of Photopic Negative Response of Full-Field and Focal Electroretinograms in Detecting Glaucomatous Eyes. J Ophthalmol. 2011: 1-11.
25. Medeiros FA, Zangwill LM, Bowd C et al. Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and Stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol. 2004; 122: 827-37.
26. Kanamori A, Nagai-Kusuhara A, Escaño MFT et al. Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage. Graefe’s Arch Clin Exp Ophthalmol. 2006; 244: 58-68.
27. Toth M, Kothy P, Hollo G. Accuracy of scanning laser polarimetry, scanning laser tomography, and their combination in a glaucoma screening trial. J Glaucoma. 2008; 17: 639-46.
28. Weinreb RN, Zangwill L, Berry CC et al. Detection of glaucoma with scanning laser polarimetry. Arch Ophthalmol. 1998; 116: 1583-9.
29. Funaki S, Shirakashi M, Yaoeda K et al. Specificity and sensitivity of glaucoma detection in the Japanese population using scanning laser polarimetry. Br J Ophthalmol. 2002; 86: 70-4.
30. Da Pozzo S, Fuser M, Vattovani O et al. GDx-VCC performance in discriminating normal from glaucomatous eyes with early visual field loss. Graefes Arch Clin Exp Ophthalmol. 2006; 244: 689-95.
31. Niyadurupola N, Luu CD, Nguyen DQ et al. Intraocular pressure lowering is associated with an increase in the photopic negative response (PhNR) amplitude in glaucoma and ocular hypertensive eyes. Invest Ophthalmol Vis Sci. 2013; 54: 1913-9.
32. Ventura LM, Feuer WJ, Porciatti V. Progressive loss of retinal ganglion cell function is hindered with IOP-lowering treatment in early glaucoma. Invest Ophthalmol Vis Sci. 2012; 53: 659-63.
33. Machida S, Kaneko M, Kurosaka D. Regional variations in correlation between photopic negative response of focal electoretinograms and ganglion cell complex in glaucoma. Curr Eye Res. 2015; 40(4): 439-49. https://doi.org/10.3109/02713683.2014.922196.