Twenty years of experience with AcrySof® – its influence on cataract surgery

Main Article Content

Elżbieta Jadowska

Abstract

Unfortunately, there is no such thing as an organic replacement lens to be implanted after cataract surgery. That is why intraocular lens (IOL) must work with the eye’s natural physiology not only to mimic the biological functions of the crystalline lens, but also to maximize patient outcomes. While preparing a patient for surgery, we should take into account some factors which can determine the outcomes, such as: the IOL design, which will ensure stability and predictable refractive effect, a high biocompatibility with the tissues of the eye, and the protective effect to the eye. Properly selected lens can ensure restoration of functional vision, image quality, the best possible contrast or the reduction of spherical aberration, which all testify to the cataract surgery succes

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Jadowska E. Twenty years of experience with AcrySof® – its influence on cataract surgery. Ophthatherapy [Internet]. 2015Sep.30 [cited 2025Jan.22];2(3):213-22. Available from: https://journalsmededu.pl/index.php/ophthatherapy/article/view/645
Section
Articles

References

1. Davison JA. Capsule contraction syndrome. J Cataract Refract Surg. 1993; 19(5): 582-9.
2. Hayashi H, Hayashi K, Nakao F et al. Areareduction in the anterior capsule opening in eyes of diabetes mellitus patient. J Cataract Refract Surg. 1998; 24(8): 1105-10.
3. Hayashi K, Hayashi H, Matsuo K et al. Anterior capsule contraction and intraocular lens dislocation after implant surgery in eyes with retinitis pigmentosa. Ophthalmology. 1998; 105(7): 1239-43.
4. Nagata M, Matsushima H, Mukai K et al. Comparison of anterior capsule contraction between 5 foldable intraocular lens models. J Cataract Refract Surg. 2008; 34(9): 1495-8.
5. Ursell PG, Spalton DJ, Pande MV et al. Relationship between intraocular lens biomaterials and posterior capsule opacification. J Cataract Refract Surg. 1998; 24(3): 352-60.
6. Vasavada AR, Raj SM, Shah A et al. Comparison of posterior capsule opacification with hydrophobic acrylic and hydrophilic acrylic intraocular lenses. J Cataract Refract Surg. 2011; 37(6): 1050-9.
7. Schaumberg DA, Dana MR, Christen WG et al. A systematic overview of the incidence of posterior capsule opacification. Ophthalmology. 1998; 105(7): 1213-21.
8. Bender LE, Spalton DJ, Meacock W et al. Predicting posterior capsule opacification: value of early retroillumination imaging. J Cataract Refract Surg. 2003; 29(3): 526-31.
9. Heatley CJ, Spalton DJ, Kumar A et al. Comparison of posterior capsule opacification rates between hydrophilic and hydrophobic single-piece acrylic intraocular lenses. J Cataract Refract Surg. 2005; 31(4): 718-24.
10. Hollick EJ, Spalton DJ, Ursell PG et al. The effect of polymethylmethacrylate, silicone, and polyacrylic intraocular lenses on posterior capsular opacification 3 years after cataract surgery. Ophthalmology. 1999; 106(1): 49-54.
11. Iwase T, Nishi Y, Oveson BC et al. Hydrophobic versus double-square-edged hydrophilic foldable acrylic intraocular lens: effect on posterior capsule opacification. J Cataract Refract Surg. 2011; 37(6): 1060-8.
12. Biber JM, Sandoval HP, Trivedi RH et al. Comparison of the incidence and visual significance of posterior capsule opacification between multifocal spherical, monofocal spherical, and monofocal aspheric intraocular lenses. J Cataract Refract Surg. 2009; 35(7): 1234-8.
13. Nagata T, Minakata A, Watanabe I. Adhesiveness of AcrySof to a collagen film. J Cataract Refract Surg. 1998; 24(3): 367-70.
14. Ong M, Wang L, Karakelle M. Fibronectin Adhesive Properties of Various Intraocular Lens Materials. Invest Ophthalmol Vis Sci. 2013; 54: 819, B0043.
15. Kato K, Nishida M, Yamane H et al. Glistening formation in an AcrySof lens initiated by spinodal decomposition of the polymer network by temperature change. J Cataract Refract Surg. 2001; 27(9): 1493-8.
16. Dorey MW, Brownstein S, Hill VE et al. Proposed pathogenesis for the delayed postoperative opacification of the hydroview hydrogel intraocular lens. Am J Ophthalmol. 2003; 135(5): 591-8.
17. Morgan-Warren PJ, Smith JA. Intraocular lens-edge design and material factors contributing to posterior-capsulotomy rates: comparing Hoya FY60aD, PY60aD, and AcrySof SN60WF. Clin Ophthalmol. 2013; 7: 1661-7.
18. Kang S, Choy JA, Joo CK. Comparison of posterior capsular opacification in heparin-surface modified hydrophilic acrylic and hydrophobic acrylic intraocular lenses. Jap J Ophthalmol 2009; 53: 204-8.
19. Cleary G, Spalton DJ, Hancox J et al. Randomized intraindividual comparison of posterior capsule opacification between a microincision intraocular lens and a conventional intraocular lens. J Cataract Refract Surg. 2009; 35(2): 265-72.
20. Dhaliwal DK, Mamalis N, Olson RJ et al. Visual significance of glistenings seen in the AcrySofintraocular lens. J Cataract Refract Surg. 1996; 22(4): 452-7.
21. Waite A, Faulkner N, Olson RJ. Glistenings in the single-piece, hydrophobic, acrylic intraocular lenses. Am J Ophthalmol. 2007; 144(1): 143-4.
22. Tognetto D, Toto L, Sanguinetti G et al. Glistenings in foldable intraocular lenses. J Cataract Refract Surg. 2002; 28(7): 1211-6.
23. Wilkins E, Olson RJ. Glistenings with longterm follow-up of the Surgidev B20/20 polymethylmethacrylate intraocular lens. Am J Ophthalmol. 2001; 132(5): 783-5.
24. Maki T, Izumi S, Ayaki M et al. Glistenings in PMMA intraocular lenses. Showa Univ J Med Sci. 2004; 16: 75-82.
25. Werner L. Glistenings and surface light scatteringin intraocular lenses. J Cataract Refract Surg. 2010; 36(8):1398-420.
26. Moreno-Montanes J, Alvarez A, Rodriguez-Conde R et al. Clinical factors related to the frequency and intensity of glistenings in AcrySof intraocular lenses. J Cataract Refract Surg. 2003; 29(10): 1980-4.
27. Colin J, Orignac I, Touboul D. Glistenings in alarge series of hydrophobic acrylic intraocularlenses. J Cataract Refract Surg. 2009; 35(12): 2121-6.
28. Ayaki M, Nishihara H, Yaguchi S et al. Effect of ophthalmic solution components on acrylic intraocular lenses. J Cataract Refract Surg. 2007; 33(1): 122-6.
29. Minami H, Torii K, Hiroi K et al. Glistening of the acrylic intraocular lenses. Rinsho Ganka. 1999; 53: 991-4.
30. Viestenz A, Seitz B, Langenbucher A. Evaluating the eye’s rotational stability during standard photography: effect on determining the axial orientation of toric intraocular lenses. J Cataract Refract Surg. 2005; 31(3): 557-61.
31. Weinand F, Jung A, Stein A et al. Rotational stability of a single-piece hydrophobic acrylic intraocular lens: new method for high-precision rotation control. J Cataract Refract Surg. 2007; 33(5): 800-3.
32. Mendicute J, Irigoyen C, Aramberri J et al. Foldable toric intraocular lens for astigmatism correction in cataract patients. J Cataract Refract Surg. 2008; 34(4): 601-7.
33. Ruhswurm I, Scholz U, Zehetmayer M et al. Astigmatism correction with a foldable toric intraocular lens in cataract patients. J Cataract Refract Surg. 2000; 26(7): 1022-7.
34. Miyake T, Kamiya K, Amano R et al. Long-term clinical outcomes of toric intraocular lens implantation in cataract cases with preexisting astigmatism. J Cataract Refract Surg. 2014; 40(10): 1654-60.
35. Bauer NJ, de Vries NE, Webers CA et al. Astigmatism management in cataract surgery with the AcrySof toric intraocular lens. J Cataract Refract Surg. 2008; 34(9): 1483-8.
36. Ferreira TB, Marques EF, Rodrigues A et al. Visual and optical outcomes of a diffractive multifocal toric intraocular lens. J Cataract Refract Surg. 2013; 39(7): 1029-35.
37. Alfonso JF, Knorz M, Fernandez-Vega L et al. Clinical outcomes after bilateral implantation of an apodized +3.0D toric diffractive multifocal intraocular lens. J Cataract Refract Surg. 2014; 40(1): 51-9.
38. Kim MH, Chung TY, Chung ES. Long-term efficacy and rotational stability of AcrySof toric intraocular lens implantation in cataract surgery. Korean J Ophthalmol. 2010; 24(4): 207-12.
39. Cekic O, Batman C. The relationship between capsulorhexis size and anterior chamber depth relation. Ophthalmic Surg Lasers. 1999; 30(3): 185-90.
40. Olsen T. Sources of error in intraocular lens power calculation. J Cataract Refract Surg. 1992; 18(2): 125-9.
41. Stifter E, Menapace R, Luksch A et al. Anterior chamber depth and change in axial intraocular lens position after cataract surgery with primary posterior capsulorhexis and posterior optic buttonholing. J Cataract Refract Surg. 2008; 34(5): 749-54.
42. Ursell PG, Spalton DJ, Pande MV. Anterior capsule stability in eyes with intraocular lenses made of poly(methyl methacrylate), silicone, and AcrySof. J Cataract Refract Surg. 1997; 23(10): 1532-8.
43. Nejima R, Miyai T, Kataoka Y et al. Prospective intrapatient comparison of 6.0-millimeter optic single-piece and 3-piece hydrophobic acrylic foldable intraocular lenses. Ophthalmology. 2006; 113(4): 585-90.
44. Nagamoto T, Eguchi G. Morphologic compatibility or intraocular lens haptics and the lens capsule. J Cataract Refract Surg. 1997; 23(8): 1254-9.
45. Packer M, Fine IH, Hoffman RS et al. Prospective randomized trial of an anterior surface modified prolate intraocular lens. J Refract Surg. 2002; 18(6): 692-6.
46. Artal P, Guirao A, Berrio E et al. Compensation of corneal aberrations by the internal optics in the human eye. J Vis. 2001; 1(1): 1-8.
47. Holladay JT, Piers PA, Koranyi G et al. A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J Refract Surg. 2002; 18(6): 683-91.
48. Madrid-Costa D, Ruiz-Alcocer J, Ferrer-Blasco T et al. In vitro optical performance of a new aberration-free intraocular lens. Eye (Lond). 2014; 28(5): 614-20.
49. Perez-Vives C, Ferrer-Blasco T, Garcia-Lazaro S et al. Optical quality comparison between spherical and aspheric toric intraocular lenses. Eur J Ophthalmol. 2014; 24(5): 699-706.
50. Ferreira TB, Almeida A. Alcon Acrysof IQ toric intraocular lenses. J Refract Surg. 2012; 28(8): 551-5.
51. Atchison DA. Design of aspheric intraocular lenses. Ophthalmic Physiol Opt .1991; 11(2): 137-46.
52. Carlson AN, Stewart WC, Tso PC. Intraocular lens complications requiring removal or exchange. Surv Ophthalmol. 1998; 42(5): 417-40.
53. Gimbel HV, Condon GP, Kohnen T et al. Late in-the-bag intraocular lens dislocation: incidence, prevention, and management. J Cataract Refract Surg. 2005; 31(11): 2193-204.
54. Dick HB, Krummenauer F, Schwenn O et al. Objective and subjective evaluation of photic phenomena after monofocal and multifocal intraocular lens implantation. Ophthalmology. 1999; 106(10): 1878-86.
55. Ogura Y, Ong MD, Akinay A et al. Optical performance of hydrophobic acrylic intraocular lenses with surface light scattering. J Cataract Refract Surg. 2014; 40(1): 104-13.
56. Ferrer-Blasco T, Montes-Mico R, Peixoto-de-Matos SC et al. Prevalence of corneal astigmatism before cataract surgery. J Cataract Refract Surg. 2009; 35(1): 70-5.
57. Statham M, Apel A, Stephensen D. Comparison of the AcrySof SA60 spherical intraocular lens and the AcrySof Toric SN60T3 intraocular lens outcomes in patients with low amounts of corneal astigmatism. Clin Experiment Ophthalmol. 2009; 37(8): 775-9.
58. Hayashi K, Manabe S, Yoshida M et al. Effect of astigmatism on visual acuity in eyes with a diffractive multifocal intraocular lens. J Cataract Refract Surg. 2010; 36(8): 1323-9.
59. Fernandez-Vega L, Alfonso JF, Montes-Mico R et al. Visual acuity tolerance to residual refractive errors in patients with an apodized diffractive intraocular lens. J Cataract Refract Surg. 2008; 34(2): 199-204.
60. Hoffmann PC, Auel S, Hutz WW. Results of higher power toric intraocular lens implantation. J Cataract Refract Surg. 2011; 37(8): 1411-8.
61. Ouchi M. High-cylinder toric intraocular lens implantation versus combined surgery of low-cylinder intraocular lens implantation and limbal relaxing incision for high-astigmatism eyes. Clin Ophthalmol. 2014; 8: 661-7.
62. Packer M, Fine IH, Hoffman RS. Refractive lens exchange with the array multifocal intraocular lens. J Cataract Refract Surg. 2002; 28(3): 421-4.
63. Alfonso JF, Fernandez-Vega L, Valcarcel B et al. Outcomes and patient satisfaction after presbyopic bilateral lens exchange with the ReSTOR IOL in emmetropic patients. J Refract Surg. 2010; 26(12): 927-33.
64. Blaylock JF, Si Z, Aitchison S et al. Visual function and change in quality of life after bilateral refractive lens exchange with the ReSTOR multifocal intraocular lens. J Refract Surg. 2008; 24(3): 265-73.
65. Dick HB, Gross S, Tehrani M et al. Refractive lens exchange with an array multifocal intraocular lens. J Refract Surg. 2002; 18(5): 509-18.
66. Fernandez-Vega L, Alfonso JF, Rodriguez PP et al. Clear lens extraction with multifocal apodized diffractive intraocular lens implantation. Ophthalmology. 2007; 114(8): 1491-8.
67. Ferrer-Blasco T, Garcia-Lazaro S, Albarran-Diego C et al. Contrast sensitivity after refractive lens exchange with a multifocal diffractive aspheric intraocular lens. Arq Bras Oftalmol. 2013; 76(2): 63-8.
68. Ferrer-Blasco T, Montes-Mico R, Cervino A et al. Contrast sensitivity after refractive lens exchange with diffractive multifocal intraocular lens implantation in hyperopic eyes. J Cataract Refract Surg. 2008; 34(12): 2043-8.
69. Goes FJ. Refractive lens exchange with the diffractive multifocal Tecnis ZM900 intraocular lens. J Refract Surg. 2008; 24(3): 243-50.
70. Leysen I, Bartholomeeusen E, Coeckelbergh T et al. Surgical outcomes of intraocular lens exchange: five-year study. J Cataract Refract Surg. 2009; 35(6): 1013-8.
71. Alio JL, Grabner G, Plaza-Puche AB et al. Postoperative bilateral reading performance with 4 intraocular lens models: six-month results. J Cataract Refract Surg. 2011; 37(5): 842-852.
72. Alio JL, Plaza-Puche AB, Pinero DP et al. Optical analysis, reading performance, and quality-of life evaluation after implantation of a diffractive multifocal intraocular lens. J Cataract Refract Surg. 2011; 37(1): 27-37.
73. Augustin AJ. The physiology of scotoptic vision, contrast vision, color vision and circadian rhythmicity. Retina. 2008; 28(9): 1179-87.
74. Patel AS, Dacey DM. Relative effectiveness of a blue-light filtering IOL photoentrainment of the circadian rhythm. JCRS. 2009; 35(3): 529-39.
75. Hutz WW, Eckhardt HB, Rohrig B et al. Reading ability with 3 multifocal intraocular lens models. J Cataract Refract Surg. 2006; 32(12): 2015-21.
76. Cionni RJ, Tsai JH. Color perception with AcrySofnatural and AcrySof single-piece intraocular lenses under photopic and mesopic conditions. J Cataract Refract Surg. 2006; 32(2): 236-42.
77. Marshall J, Cionni RJ, Davison J et al. Clinical results of the blue-light filtering AcrySof Natural foldable acrylic intraocular lens. J Cataract Refract Surg. 2005; 31(12): 2319-23.
78. Rodriguez-Galietero A, Montes-Mico R, Munoz G et al. Comparison of contrast sensitivity and color discrimination after clear and yellow intraocular lens implantation. J Cataract Refract Surg. 2005; 31(9): 1736-40.
79. Miyata A. Neutralization method for detecting the incidence of color perception changes after cataract surgery. J Cataract Refract Surg. 2015; 41(4): 764-70.
80. Nolan JM, O’Reilly P, Loughman J et al. Augmentation of macular pigment following implantation of blue light-filtering intraocular lenses at the time of cataract surgery. Invest Ophthalmol Vis Sci. 2009; 50(10): 4777-85.
81. Obana A, Tanito M, Gohto Y et al. Macular pigment changes in pseudophakic eyes quantified with resonance. Raman spectroscopy. Ophthalmology. 2011; 118(9): 1852-8.
82. Rezai KA, Gasyna E, Seagle BL et al. AcrySof Natural filter decreases blue light-induced apoptosis in human retinal pigment epithelium. Graefe’s Arch Clin Exp Ophthalmol. 2008; 246(5): 671.
83. Gray R, Perkins SA, Suryakumar R et al. Reduced effect of glare disability on driving performance in patients with blue light–filtering intraocular lenses. J Cataract Refract Surg. 2011; 37: 38-44.
84. Sparrow JR, Miller AS, Zhou J. Blue light-absorbing intraocular lens and retinal pigment epithelium protection in vitro. J Cataract Refract Surg. 2004; 30(4): 873-8.
85. Marshall JC, Gordon KD, McCauley CS et al. The effect of blue light exposure and use of intraocular lenses on human uveal melanoma cell lines. Melanoma Research. 2006; 16(6): 537-41.