Corneal refractive surgery – overview of laser technologies and methods
Main Article Content
Abstract
Laser refractive surgery, using excimer and/or femto laser technology is surgery of the cornea, correcting refractive errors by changing its anterior curvature. The article presents briefly the first corneal refractive methods, then the characteristics of laser technology and an overview of the currently used methods of laser vision correction.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright: © Medical Education sp. z o.o. License allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Address reprint requests to: Medical Education, Marcin Kuźma (marcin.kuzma@mededu.pl)
References
2. Saw SM, Katz J, Schein OD et al. Epidemiology of myopia. Epid Rev. 1996; 18: 175-87.
3. Dandona R, Dandona L. Refractive error blindness. Bull World Health Organ. 2001; 79: 237-43.
4. Fyodorov SN, Durnev VV. Operation of dosaged dissection of corneal circular ligament in cases of myopia of mild degree. Ann Ophthalmol. 1979; 11: 1885-90.
5. Waring GO III, Lynn MJ, McDonnell PJ et al. Results of the prospective evaluation of radial keratotomy (PERK) study 10 years after surgery. Arch Ophthalmol. 1994; 112: 1298-308.
6. Trokel SL, Srinivasan R, Braren B. Excimer laser surgery of the cornea. Am J Ophthalmol. 1983; 96: 710-5.
7. Seiler T, Bende T, Wollensak J et al. Excimer laser keratectomy for correction of astigmatism. Am J Ophthalmol. 1988; 105: 117-24.
8. Kochevar IE. Cytotoxicity and mutagenicity of excimer laser radiation. Lasers Surg Med. 1989; 9: 440-5.
9. Schalhorn SC, Farjo AA, Huang D et al. Wavefront-guided LASIK for the correction of primary myopia and astigmatism. A report by the American Academy of Ophthalmology. Ophthalmology. 2008; 115: 1249-61.
10. Chalita MR, Chavala S, Xu M et al. Wavefront analysis in post-LASIK eyes and its correlation with visual symptoms, refraction, and topography. Ophthalmology. 2004; 111: 447-53.
11. Durrie DS. First 100 CustomCornea commercial eyes. J Refract Surg 2003; 19: S687-90.
12. Mrochen M, Kaemmerer M, Seiler T. Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery. J Cataract Refract Surg. 2001; 27: 201-7.
13. Lingmin HE, Liu A, Manche EE. Wavefront-guided versus wavefront-optimized laser in situ keratomileusis for patients with myopia: A prospective randomized contralateral eye study. Am J Ophthalmol. 2014; 157: 1170-8.
14. Applegate RA, Howland HC. Refractive surgery, optical aberrations and visual performance. J Refract Surg. 1997; 13: 295-9.
15. Aktunc R, Aktunc T. Centration of excimer laser photorefractive keratectomy and changes in astigmatism. J Refract Surg. 1996; 12: S268-71.
16. Taylor NM, Eikelboom RH, van Sarloos PP et al. Determining the accuracy of an eye tracking system for laser refractive surgery. J Refract Surg. 2000; 16: S643-6.
17. El Bahrawy M, Alió JL. Excimer laser 6(th) generation: state of the art and refractive surgical outcomes. Eye Vis (Lond). 2015; 2: 6.
18. Arbelaez MC, Vidal C, Arba-Mosquera S. Excimer laser correction of moderate to high astigmatism with a non-wavefront-guided aberration-free ablation profile: Six-month results. J Cataract Refract Surg. 2009; 35: 1789-98.
19. Vega-Estrada A, Alió JL, Arba Mosquera S et al. Corneal higher order aberrations after LASIK for high myopia with a fast repetition rate excimer laser, optimized ablation profile, and femtosecond laser-assisted flap. J Refract Surg. 2012; 28: 689-96.
20. Lubatschowski H, Maatz G, Heisterkamp A et al. Application of ultrashort laser pulses for intrastromal refractive surgery. Graefes Arch Clin Exp Ophthalmol. 2000; 238: 33-9.
21. Juhasz T, Loesel FH, Kurtz RM et al. Corneal refractive surgery with femtosecond lasers. IEEE J Select Topics Quantum Electron. 1999; 5: 902-10.
22. Montés-Micó R, Rodríguez-Galietero A, Alió JL. Femtosecond laser versus mechanical keratome LASIK for myopia. Ophthalmology. 2007; 114: 62-8.
23. Lee JB, Choe CM, Kim HS et al. Comparison of TGF-β1 in tears following laser subepithelial keratomileusis and photorefractive keratectomy. J Refract Surg. 2002; 18: 130-4.
24. Gamaly TO, El Danasoury A, El Maghraby A. A prospective, randomized, contralateral eye comparison of epithelial laser in situ keratomileusis and photorefractive keratectomy in eyes prone to haze. J Refract Surg. 2007; 23(suppl): 1015-20.
25. Taneri S, Oehler S, Koch J et al. Effect of repositioning or discarding the epithelial flap in laser-assisted subepithelial keratectomy and epithelial laser in situ keratomileusis. J Cataract Refract Surg. 2011; 37: 1832-46.
26. Choi SK, Kim JH, Lee D et al. Different epithelial cleavage planes produced by various epikeratomes in epithelial laser in situ keratomileusis. J Cataract Refract Surg. 2008; 34: 2079-84.
27. Pallikaris IG, Naoumidi II, Kalyvianaki MI et al. Epi-LASIK: comparative histological evaluation of mechanical and alcohol-assisted epithelial separation. J Cataract Refract Surg. 2003; 29: 1496-501.
28. Buzzonetti L, Petrocelli G, Laborante A et al. A new transepithelial phototherapeutic keratectomy mode using the NIDEK CXIII excimer laser. J Refract Surg. 2009; 25: S122-4.
29. Pallikaris IG, Papatzanaki ME, Stathi EZ et al. Laser in situ keratomileusis. Lasers Surg Med. 1990; 10: 463-68.
30. Davison JA, Johnson SC. Intraoperative complications of LASIK flaps using the IntraLase femtosecond laser in 3009 cases. J Refract Surg. 2010; 26: 851-7.
31. Chaurasia SS, Luengo Gimeno F, Tan K et al. In vivo real-time intraocular pressure variations during LASIK flap creation. Invest Ophthalmol Vis Sci. 2010; 51: 4641-5.
32. Tanna M, Schallhorn SC, Hettinger KA. Femtosecond laser versus mechanical microkeratome: a retrospective comparison of visual outcomes at 3 months. J Refract Surg. 2009; 25(7 suppl): S668-71.
33. Wilson SE. Laser in situ keratomileusis-induced (presumed) neurotrophic epitheliopathy. Ophthalmology. 2001; 108: 1082-7.
34. Ambrósio R Jr, Tervo T, Wilson SE. LASIK-associated dry eye and neurotrophic epitheliopathy: pathophysiology and strategies for prevention and treatment. J Refract Surg. 2008; 24: 396-407.
35. Salomão MQ, Ambrósio R Jr, Wilson SE. Dry eye associated with laser in situ keratomileusis: mechanical microkeratome versus femtosecond laser. J Cataract Refract Surg. 2009; 35: 1756-60.
36. Rosa AM, Neto Murta J, Quadrado MJ et al. Femtosecond laser versus mechanical microkeratomes for flap creation in laser in situ keratomileusis and effect of postoperative measurement interval on estimated femtosecond flap thickness. J Cataract Refract Surg. 2009; 35: 833-8.
37. Moshirfar M, McCaughey MV, Reinstein DZ et al. Small-incision lenticule extraction. J Cataract Refract Surg. 2015; 41: 652-65.
38. Lin F, Xu Y, Yang Y. Comparison of the visual results after SMILE and femtosecond laser-assisted LASIK for myopia. J Refract Surg. 2014; 30: 248-54.
39. Ganesh S, Gupta R. Comparison of visual and refractive outcomes following femtosecond laser-assisted lasik with SMILE in patients with myopia or myopic astigmatism. J Refract Surg. 2014; 30: 590-6.
40. Ang M, Chaurasia SS, Angunawela RI. Femtosecond lenticule extraction (FLEx): clinical results, interface evaluation, and intraocular pressure variation. Invest Ophthalmol Vis Sci. 2012; 53: 1414-21.