Management of ocular surface disorders according to the guidelines of the Tear Film & Ocular Surface Society Dry Eye Workshop (DEWSII) Report Review article

Main Article Content

Piotr A. Woźniak
Piotr Krzywicki
Marta Szaflik

Abstract

Ocular surface disorders, including dry eye disease, affect 5–50% of the population, with prevalence increasing with age, especially among women. Symptoms such as dryness, burning, and eye fatigue significantly reduce quality of life. The tear film consists of aqueous-mucin and lipid fractions, providing protection and hydration for the eye. Meibomian gland dysfunction, which disrupts the lipid layer, accounts for most cases of dry eye disease by causing excessive tear evaporation. A modern approach to ocular surface disorder therapy, combining pharmacotherapy, neuromodulation, and advanced technologies, may relieve daily chronic eye pain.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Woźniak PA, Krzywicki P, Szaflik M. Management of ocular surface disorders according to the guidelines of the Tear Film & Ocular Surface Society Dry Eye Workshop (DEWSII) Report. Ophthatherapy [Internet]. 2024Sep.30 [cited 2025Jan.21];11(3):267-76. Available from: https://journalsmededu.pl/index.php/ophthatherapy/article/view/3205
Section
Conservative treatment

References

1. Craig JP, Nichols KK, Akpek EK et al. TFOS DEWS II Definition and Classification Report. Ocul Surf. 2017; 15(3): 276-83.
2. Craig JP, Willcox MD, Argüeso P et al.; members of TFOS International Workshop on Contact Lens Discomfort. The TFOS International Workshop on Contact Lens Discomfort: report of the contact lens interactions with the tear film subcommittee. Invest Ophthalmol Vis Sci. 2013; 54(11): TFOS123-56.
3. Belmonte C, Nichols JJ, Cox SM et al. TFOS DEWS II pain and sensation report. Ocul Surf. 2017; 15(3): 404-37.
4. Javadi MA, Feizi S. Dry eye syndrome. J Ophthalmic Vis Res. 2011; 6(3): 192-8.
5. The epidemiology of dry eye disease: report of the Epidemiology Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007; 5(2): 93-107.
6. Stapleton F, Alves M, Bunya VY et al. TFOS DEWS II Epidemiology Report. Ocul Surf. 2017; 15(3): 334-65.
7. Malet F, Le Goff M, Colin J et al. Dry eye disease in French elderly subjects: the Alienor Study. Acta Ophthalmol. 2014; 92(6): e429-36.
8. Ahn JM, Lee SH, Rim TH et al.; Epidemiologic Survey Committee of the Korean Ophthalmological Society. Prevalence of and risk factors associated with dry eye: the Korea National Health and Nutrition Examination Survey 2010-2011. Am J Ophthalmol. 2014; 158(6): 1205-14.e7.
9. Viso E, Rodriguez-Ares MT, Gude F. Prevalence of and associated factors for dry eye in a Spanish adult population (the Salnes Eye Study). Ophthalmic Epidemiol. 2009; 16(1): 15-21.
10. Tan LL, Morgan P, Cai ZQ et al. Prevalence of and risk factors for symptomatic dry eye disease in Singapore. Clin Exp Optom. 2015; 98(1): 45-53.
11. Hashemi H, Khabazkhoob M, Kheirkhah A et al. Prevalence of dry eye syndrome in an adult population. Clin Exp Ophthalmol. 2014; 42(3): 242-8.
12. Galor A, Feuer W, Lee DJ et al. Prevalence and risk factors of dry eye syndrome in a United States veterans affairs population. Am J Ophthalmol. 2011; 152(3): 377-84.e2.
13. Paulsen AJ, Cruickshanks KJ, Fischer ME et al. Dry eye in the beaver dam offspring study: prevalence, risk factors, and health-related quality of life. Am J Ophthalmol. 2014; 157(4): 799-806.
14. Ambroziak AM. Stanowisko Polskiej Grupy Ekspertów Akademii Powierzchni Oka. Wydanie pierwsze. Medical Education, Warszawa 2017.
15. Azkargorta M, Soria J, Ojeda C et al. Human Basal Tear Peptidome Characterization by CID, HCD, and ETD Followed by in Silico and in Vitro Analyses for Antimicrobial Peptide Identification. J Proteome Res. 2015; 14(6): 2649-58.
16. Zhou L, Beuerman RW. The power of tears: how tear proteomics research could revolutionize the clinic. Expert Rev Proteomics. 2017; 14(3): 189-91.
17. Zhou L, Zhao SZ, Koh SK et al. In-depth analysis of the human tear proteome. J Proteomics. 2012; 75(13): 3877-85.
18. Benjamin WJ, Borish IM. Borish’s Clinical Refraction. Saunders, Philadelphia 1998: 2-29.
19. Altman PL, Dittmer DS. Man. Biology Data Book, in Physical properties and chemical composition of tears. Federation of American Societies of Experimental Biology, Maryland 1974: 2032-40.
20. Norn MS. Tear fluid pH in normals, contact lens wearers, and pathological cases. Acta Ophthalmol (Copenh). 1988; 66(5): 485-9.
21. Fischer FH, Wiederholt M. Human precorneal tear film pH measured by microelectrodes. Graefes Arch Clin Exp Ophthalmol. 1982; 218(3): 168-70.
22. McCarey BE, Wilson LA. pH, osmolarity and temperature effects on the water content of hydrogel contact lenses. Contact Intraocul Lens Med J. 1982; 8(3): 158-67.
23. Coles WH, Jaros PA. Dynamics of ocular surface pH. Br J Ophthalmol. 1984; 68(8): 549-52.
24. Andrés S, García ML, Espina M et al. Tear pH, air pollution, and contact lenses. Am J Optom Physiol Opt. 1988; 65(8): 627-31.
25. Janszky I, Vámosi P, Országh I et al. Demonstration of increasing standard pH value of lacrimal fluid with increase of flow rate. Acta Ophthalmol Scand. 2001; 79(2): 180-3.
26. Wolff E. The muco-cutaneous junction of the lid margin and the distribution of the tear fluid. Trans Ophthalmol Soc UK. 1946; 66: 291-308.
27. Holly FJ, Lemp MA. Tear physiology and dry eyes. Surv Ophthalmol. 1977; 22(2): 69-87.
28. Yokoi N, Bron A, Georgiev G. The precorneal tear film as a fluid shell: the effect of blinking and saccades on tear film distribution and dynamics. Ocul Surf. 2014; 12: 252-66.
29. Wozniak PA, Schmidl D, Bata AM et al. Effect of different lubricant eye gels on tear film thickness as measured with ultrahigh-resolution optical coherence tomography. Acta Ophthalmol. 2017; 95(4): e307-13.
30. Wang J, Fonn D, Simpson TL et al. Precorneal and pre- and postlens tear film thickness measured indirectly with optical coherence tomography. Invest Ophthalmol Vis Sci. 2003; 44(6): 2524-8.
31. Aranha Dos Santos V, Schmetterer L, Gröschl M et al. In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography. Opt Express. 2015; 23(16): 21043-63.
32. Schmoll T, Unterhuber A, Kolbitsch C et al. Precise thickness measurements of Bowman’s layer, epithelium, and tear film. Optom Vis Sci. 2012; 89(5): E795-802.
33. Werkmeister RM, Alex A, Kaya S et al. Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci. 2013; 54(8): 5578-83.
34. Chen Q, Wang J, Tao A et al. Ultrahigh-resolution measurement by optical coherence tomography of dynamic tear film changes on contact lenses. Invest Ophthalmol Vis Sci. 2010; 51(4): 1988-93.
35. Mishima S, Gasset A, Klyce SD Jr et al. Determination of tear volume and tear flow. Invest Ophthalmol. 1966; 5(3): 264-76.
36. Kuppens EV, Stolwijk TR, de Keizer RJ et al. Basal tear turnover and topical timolol in glaucoma patients and healthy controls by fluorophotometry. Invest Ophthalmol Vis Sci. 1992; 33(12): 3442-8.
37. van Best JA, Benitez del Castillo JM, Coulangeon LM. Measurement of basal tear turnover using a standardized protocol. European concerted action on ocular fluorometry. Graefes Arch Clin Exp Ophthalmol. 1995; 233(1): 1-7.
38. Bron AJ, de Paiva CS, Chauhan SK et al. TFOS DEWS II pathophysiology report. Ocul Surf. 2017; 15(3): 438-510.
39. Begley C, Simpson T, Liu H et al. Quantitative analysis of tear film fluorescence and discomfort during tear film instability and thinning. Invest Ophthalmol Vis Sci. 2013; 54(4): 2645-53.
40. King-Smith PE, Hinel EA, Nichols JJ. Application of a novel interferometric method to investigate the relation between lipid layer thickness and tear film thinning. Invest Ophthalmol Vis Sci. 2010; 51(5): 2418-23.
41. Peng C, Cerretani C, Li Y et al. Flow Evaporimeter To Assess Evaporative Resistance of Human Tear-Film Lipid Layer. Industrial & Engineering Chemistry Research, 2014; 53(47): 18130-9.
42. Knop E, Knop N, Millar T et al. The international workshop on meibomian gland dysfunction: report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Invest Ophthalmol Vis Sci. 2011; 52(4): 1938-78.
43. Korb DR, Henriquez AS. Meibomian gland dysfunction and contact lens intolerance. J Am Optom Assoc. 1980; 51(3): 243-51.
44. Bron AJ, Benjamin L, Snibson GR. Meibomian gland disease. Classification and grading of lid changes. Eye (Lond). 1991; 5 (Pt 4): 395-411.
45. Foulks GN, Bron AJ. Meibomian gland dysfunction: a clinical scheme for description, diagnosis, classification, and grading. Ocul Surf. 2003; 1(3): 107-26.
46. Nelson JD, Shimazaki J, Benitez-del-Castillo JM et al. The international workshop on meibomian gland dysfunction: report of the definition and classification subcommittee. Invest Ophthalmol Vis Sci. 2011; 52(4): 1930-7.
47. Lindsley K, Matsumura S, Hatef E et al. Interventions for chronic blepharitis. Cochrane Database Syst Rev. 2012; 2012(5): CD005556.
48. Willcox MDP, Argüeso P, Georgiev GA et al. TFOS DEWS II Tear Film Report. Ocul Surf. 2017; 15(3): 366-403.
49. King-Smith PE, Nichols JJ, Nichols KK et al. Contributions of evaporation and other mechanisms to tear film thinning and break-up. Optom Vis Sci. 2008; 85(8): 623-30.
50. Baudouin C, Aragona P, Messmer EM et al. Role of hyperosmolarity in the pathogenesis and management of dry eye disease: proceedings of the OCEAN group meeting. Ocul Surf. 2013; 11(4): 246-58.
51. Snibson GR, Greaves JL, Soper ND et al. Ocular surface residence times of artificial tear solutions. Cornea. 1992; 11(4): 288-93.
52. Ambroziak AM, Langwińska-Wośko E, Korwin M. Osmolarność – aktualne spojrzenie na nowy standard w diagnostyce zaburzeń filmu łzowego. Kontaktologia i Optyka Okulistyczna. 2010; 1(25): 42-9.
53. Ambroziak AM, Nasiłowska-Paciorek A. Immunomodulacja miejscowa w przebiegu zespołu dysfunkcyjnych łez i schorzeń powierzchni oka – cyklosporyna. Okulistyka „Kompendium Okulistyki” Program Edukacyjny dla lekarzy praktyków. 2017; 1(37).
54. Jones L, Downie LE, Korb D et al. TFOS DEWS II Management and Therapy Report. Ocul Surf. 2017; 15(3): 575-628.
55. Price MO, Price FW Jr. Efficacy of topical cyclosporine 0.05% for prevention of cornea transplant rejection episodes. Ophthalmology. 2006; 113(10): 1785-90.
56. Paugh JR, Nguyen AL, Ketelson HA et al. Precorneal residence time of artificial tears measured in dry eye subjects. Optom Vis Sci. 2008; 85(8): 725-31.
57. Zhu H, Chauhan A. Effect of viscosity on tear drainage and ocular residence time. Optom Vis Sci. 2008; 85(8): 715-25.
58. Yellepeddi VK, Palakurthi S. Recent Advances in Topical Ocular Drug Delivery. J Ocul Pharmacol Ther. 2016; 32(2): 67-82.
59. Bandlitz S, Purslow C, Murphy PJ et al. Time course of changes in tear meniscus radius and blink rate after instillation of artificial tears. Invest Ophthalmol Vis Sci. 2014; 55(9): 5842-7.
60. Kuntner C, Wanek T, Hoffer M et al. Radiosynthesis and assessment of ocular pharmacokinetics of (124)I-labeled chitosan in rabbits using small-animal PET. Mol Imaging Biol. 2011; 13(2): 222-6.
61. Gupta H, Malik A, Khar RK et al. Physiologically active hydrogel (in situ gel) of sparfloxacin and its evaluation for ocular retention using gamma scintigraphy. J Pharm Bioallied Sci. 2015; 7(3): 195-200.
62. Wilson CG. Topical drug delivery in the eye. Exp Eye Res. 2004; 78(3): 737-43.
63. Snibson GR, Greaves JL, Soper ND et al. Precorneal residence times of sodium hyaluronate solutions studied by quantitative gamma scintigraphy. Eye (Lond). 1990; 4 (Pt 4): 594-602.
64. Cheung IMY, Xue AL, Kim A et al. In vitro anti-demodectic effects and terpinen-4-ol content of commercial eyelid cleansers. Cont Lens Anterior Eye. 2018; 41(6): 513-7.
65. Tighe S, Gao YY, Tseng SC. Terpinen-4-ol is the Most Active Ingredient of Tea Tree Oil to Kill Demodex Mites. Transl Vis Sci Technol. 2013; 2(7): 2.
66. Jehangir N, Bever G, Mahmood SM et al. Comprehensive Review of the Literature on Existing Punctal Plugs for the Management of Dry Eye Disease. J Ophthalmol. 2016; 2016: 9312340.
67. Song JS, Woo IH, Eom Y et al. Five Misconceptions Related to Punctal Plugs in Dry Eye Management. Cornea. 2018; 37(Suppl. 1): S58-S61.
68. Xie J, Wang C, Ning Q et al. A new strategy to sustained release of ocular drugs by one-step drug-loaded microcapsule manufacturing in hydrogel punctal plugs. Graefes Arch Clin Exp Ophthalmol. 2017; 255(11): 2173-84.
69. Yu J, Asche CV, Fairchild CJ. The economic burden of dry eye disease in the United States: a decision tree analysis. Cornea. 2011; 30(4): 379-87.
70. Arita R, Mizoguchi T, Fukuoka S et al. Multicenter Study of Intense Pulsed Light Therapy for Patients With Refractory Meibomian Gland Dysfunction. Cornea. 2018; 37(12): 1566-71.
71. Gupta PK, Vora GK, Matossian C et al. Outcomes of intense pulsed light therapy for treatment of evaporative dry eye disease. Can J Ophthalmol. 2016; 51(4): 249-53.
72. Vegunta S, Patel D, Shen JF. Combination Therapy of Intense Pulsed Light Therapy and Meibomian Gland Expression (IPL/MGX) Can Improve Dry Eye Symptoms and Meibomian Gland Function in Patients With Refractory Dry Eye: A Retrospective Analysis. Cornea. 2016; 35(3): 318-22.
73. Vora GK, Gupta PK. Intense pulsed light therapy for the treatment of evaporative dry eye disease. Curr Opin Ophthalmol. 2015; 26(4): 314-8.
74. Zhu B, Jin X. Multicenter Study of Intense Pulsed Light Therapy for Patients With Refractory Meibomian Gland Dysfunction. Cornea, 2019.
75. Mencucci R, Pellegrini-Giampietro DE, Paladini I et al. Azithromycin: assessment of intrinsic cytotoxic effects on corneal epithelial cell cultures. Clin Ophthalmol. 2013; 7: 965-71
76. Alves M, Fonseca EC, Alves MF et al. Dry eye disease treatment: a systematic review of published trials and a critical appraisal of therapeutic strategies. Ocul Surf. 2013; 11(3): 181-92.
77. Abidi A, Shukla P, Ahmad A. Lifitegrast: A novel drug for treatment of dry eye disease. J Pharmacol Pharmacother. 2016; 7(4): 194-8.
78. Donnenfeld ED, Karpecki PM, Majmudar PA et al. Safety of Lifitegrast Ophthalmic Solution 5.0% in Patients With Dry Eye Disease: A 1-Year, Multicenter, Randomized, Placebo-Controlled Study. Cornea. 2016; 35(6): 741-8.
79. Donnenfeld ED, Perry HD, Nattis AS et al. Lifitegrast for the treatment of dry eye disease in adults. Expert Opin Pharmacother. 2017; 18(14): 1517-24.
80. Godin MR, Gupta PK. Lifitegrast ophthalmic solution in the treatment of signs and symptoms of dry eye disease: design, development, and place in therapy. Clin Ophthalmol. 2017; 11: 951-7.
81. Guimaraes de Souza R, Yu Z, Stern ME et al. Suppression of Th1-Mediated Keratoconjunctivitis Sicca by Lifitegrast. J Ocul Pharmacol Ther. 2018; 34(7): 543-9.
82. Holland EJ, Luchs J, Karpecki PM et al. Lifitegrast for the Treatment of Dry Eye Disease: Results of a Phase III, Randomized, Double- Masked, Placebo-Controlled Trial (OPUS-3). Ophthalmology. 2017; 124(1): 53-60.
83. Holland EJ, Whitley WO, Sall K et al. Lifitegrast clinical efficacy for treatment of signs and symptoms of dry eye disease across three randomized controlled trials. Curr Med Res Opin. 2016; 32(10): 1759-65.
84. Hussar DA, Cheeseman RS 2nd. Lifitegrast, Bezlotoxumab, and Sugammadex sodium. J Am Pharm Assoc (2003). 2017; 57(2): 284-7.
85. Keating GM. Lifitegrast Ophthalmic Solution 5%: A Review in Dry Eye Disease. Drugs. 2017; 77(2): 201-8.
86. Lollett IV, Galor A. Dry eye syndrome: developments and lifitegrast in perspective. Clin Ophthalmol. 2018; 12: 125-39.
87. Nichols KK, Donnenfeld ED, Karpecki PM et al. Safety and tolerability of lifitegrast ophthalmic solution 5.0%: Pooled analysis of five randomized controlled trials in dry eye disease. Eur J Ophthalmol. 2019; 29(4): 394-401.
88. Nichols KK, Holland E, Toyos MM et al. Ocular comfort assessment of lifitegrast ophthalmic solution 5.0% in OPUS-3, a Phase III randomized controlled trial. Clin Ophthalmol. 2018; 12: 263-70.
89. Patel J, Franko J. Lifitegrast Ophthalmic Solution 5% (Xiidra) for Dry Eye Disease. Am Fam Physician. 2018; 98(2): 119-20.
90. Paton DM. Lifitegrast: First LFA-1/ICAM-1 antagonist for treatment of dry eye disease. Drugs Today (Barc). 2016; 52(9): 485-93.
91. Perez VL, Pflugfelder SC, Zhang S et al. Lifitegrast, a Novel Integrin Antagonist for Treatment of Dry Eye Disease. Ocul Surf. 2016; 14(2): 207-15.
92. Semba CP, Gadek TR. Development of lifitegrast: a novel T-cell inhibitor for the treatment of dry eye disease. Clin Ophthalmol. 2016; 10: 1083-94.
93. Sheppard JD, Torkildsen GL, Lonsdale JD et al.; OPUS-1 Study Group. Lifitegrast ophthalmic solution 5.0% for treatment of dry eye disease: results of the OPUS-1 phase 3 study. Ophthalmology. 2014; 121(2): 475-83.
94. Skoczeń S, Balwierz W, Moryl-Bujakowska A et al.; Polish Pediatric Leukemia/Lymphoma Study Group. Ostra białaczka limfoblastyczna u dzieci ze wstepną leukocytozą powyżej 50,000/mm3: podsumowanie wyników leczenia Polskiej Pediatrycznej Grupy ds. Leczenia Białaczek i Chłoniaków. Przegl Lek. 2006; 63(1): 11-4.
95. Sobolewski B, Doman P, Stetkiewicz T et al. The toxic impact of local anaesthetics in menopausal women: causes, prevention and treatment after local anaesthetic overdose. Local anaesthetic systemic toxicity syndrome. Prz Menopauzalny. 2015; 14(1): 65-70.
96. Sun Y, Zhang R, Gadek TR et al. Corneal inflammation is inhibited by the LFA-1 antagonist, lifitegrast (SAR 1118). J Ocul Pharmacol Ther. 2013; 29(4): 395-402.
97. Tauber J, Karpecki P, Latkany R et al.; OPUS-2 Investigators. Lifitegrast Ophthalmic Solution 5.0% versus Placebo for Treatment of Dry Eye Disease: Results of the Randomized Phase III OPUS-2 Study. Ophthalmology. 2015; 122(12): 2423-31.
98. Wan KH, Chen LJ, Young AL. Efficacy and Safety of Topical 0.05% Cyclosporine Eye Drops in the Treatment of Dry Eye Syndrome: A Systematic Review and Meta-analysis. Ocul Surf. 2015; 13(3): 213-25.
99. Wurtele ES, Chappell J, Jones AD et al. Medicinal plants: a public resource for metabolomics and hypothesis development. Metabolites. 2012; 2(4): 1031-59.
100. Stone DU, Chodosh J. Oral tetracyclines for ocular rosacea: an evidence-based review of the literature. Cornea. 2004; 23(1): 106-9.
101. Voils SA, Evans ME, Lane MT et al. Use of macrolides and tetracyclines for chronic inflammatory diseases. Ann Pharmacother. 2005; 39(1): 86-94.
102. Incekalan TK, Harbiyeli II, Yagmur M et al. Effectiveness of Intraductal Meibomian Gland Probing in Addition to the Conventional Treatment in Patients with Obstructive Meibomian Gland Dysfunction. Ocul Immunol Inflamm. 2019; 27(8): 1345-51.
103. Ma X, Lu Y. Efficacy of Intraductal Meibomian Gland Probing on Tear Function in Patients With Obstructive Meibomian Gland Dysfunction. Cornea. 2016; 35(6): 725-30.
104. Maskin SL. Intraductal meibomian gland probing relieves symptoms of obstructive meibomian gland dysfunction. Cornea. 2010; 29(10): 1145-52.
105. Maskin SL, Testa WR. Growth of meibomian gland tissue after intraductal meibomian gland probing in patients with obstructive meibomian gland dysfunction. Br J Ophthalmol. 2018; 102(1): 59-68.
106. Nakayama N, Kawashima M, Kaido M et al. Analysis of Meibum Before and After Intraductal Meibomian Gland Probing in Eyes With Obstructive Meibomian Gland Dysfunction. Cornea. 2015; 34(10): 1206-8.
107. Sik Sarman Z, Cucen B, Yuksel N et al. Effectiveness of Intraductal Meibomian Gland Probing for Obstructive Meibomian Gland Dysfunction. Cornea. 2016; 35(6): 721-4.
108. Syed ZA, Sutula FC. Dynamic Intraductal Meibomian Probing: A Modified Approach to the Treatment of Obstructive Meibomian Gland Dysfunction. Ophthalmic Plast Reconstr Surg. 2017; 33(4): 307-9.
109. Wladis EJ. Intraductal meibomian gland probing in the management of ocular rosacea. Ophthalmic Plast Reconstr Surg, 2012. 28(6): 416-8.
110. Finis D, Hayajneh J, König C et al. Evaluation of an automated thermodynamic treatment (LipiFlow®) system for meibomian gland dysfunction: a prospective, randomized, observer-masked trial. Ocul Surf. 2014; 12(2): 146-54.
111. Greiner JV. A single LipiFlow(R) Thermal Pulsation System treatment improves meibomian gland function and reduces dry eye symptoms for 9 months. Curr Eye Res. 2012; 37(4): 272-8.
112. Korb DR, Blackie CA. Case report: a successful LipiFlow treatment of a single case of meibomian gland dysfunction and dropout. Eye Contact Lens. 2013; 39(3): e1-3.
113. Lane SS, DuBiner HB, Epstein RJ et al. A new system, the LipiFlow, for the treatment of meibomian gland dysfunction. Cornea. 2012; 31(4): 396-404.
114. Zhao Y, Veerappan A, Yeo S et al.; Collaborative Research Initiative for Meibomian gland dysfunction (CORIM). Clinical Trial of Thermal Pulsation (LipiFlow) in Meibomian Gland Dysfunction With Preteatment Meibography. Eye Contact Lens. 2016; 42(6): 339-46.
115. Daull P, Lallemand F, Garrigue JS. Benefits of cetalkonium chloride cationic oil-in-water nanoemulsions for topical ophthalmic drug delivery. J Pharm Pharmacol. 2014; 66(4): 531-41.
116. Wilson SE, Perry HD. Long-term resolution of chronic dry eye symptoms and signs after topical cyclosporine treatment. Ophthalmology. 2007; 114(1): 76-9.
117. Baudouin C, Figueiredo FC, Messmer EM et al. A randomized study of the efficacy and safety of 0.1% cyclosporine A cationic emulsion in treatment of moderate to severe dry eye. Eur J Ophthalmol. 2017; 27(5): 520-30.
118. Leonardi A, Van Setten G, Amrane M et al. Efficacy and safety of 0.1% cyclosporine A cationic emulsion in the treatment of severe dry eye disease: a multicenter randomized trial. Eur J Ophthalmol. 2016; 26(4): 287-96.
119. Baudouin C, de la Maza MS, Amrane M et al. One-Year Efficacy and Safety of 0.1% Cyclosporine a Cationic Emulsion in the Treatment of Severe Dry Eye Disease. Eur J Ophthalmol. 2017; 27(6): 678-85.
120. Feder RS, Olsen TW, Prum BE Jr et al. Comprehensive Adult Medical Eye Evaluation Preferred Practice Pattern(®) Guidelines. Ophthalmology. 2016; 123(1): P209-36.