Differential diagnosis of pituitary macroadenoma before performing head and orbits neuroimaging Case report
Main Article Content
Abstract
Visual field defects resulting from compressive or infiltrative lesions in the visual pathway often differ from typical textbook patterns. This results from asymmetric tumor growth or uneven impact of individual nerve fibres, which also differ in their susceptibility to damage. In addition, the reliability of perimetry based on false positive and negative errors on the part of the examined person must be taken into account. Neuroimaging comes in handy with interpretation of doubtful cases. Unfortunately, sometimes the visual field defects can mimic glaucomatous defects, especially in correlation with elevated intraocular pressure as an incidental finding. This delays making the critical diagnosis and proper treatment of the patient. In ophthalmological practice, knowledge of the proliferative processes of the central nervous system, together with the basic characteristics of these diseases, plays a crucial role in the clinical assessment of indications for extended diagnostics.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright: © Medical Education sp. z o.o. License allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Address reprint requests to: Medical Education, Marcin Kuźma (marcin.kuzma@mededu.pl)
References
2. Nelson R, Connaughton V. Bipolar Cell Pathways in the Vertebrate Retina. In: Webvision: The Organization of the Retina and Visual System. Kolb H, Fernandez E, Nelson R (eds.). University of Utah Health Sciences Center, Salt Lake City 1995.
3. Prasad S. Retrochiasmal Disorders. In: Liu, Volpe, and Galetta’s Neuro-Ophthalmology: Diagnosis and Management, 3rd ed. Liu GT, Volpe NJ, Galetta SL (eds.). Elsevier Inc., Edinburgh 2019: 293-339.
4. Kamali A, Hasan KM, Adapa P et al. Distinguishing and quantification of the human visual pathways using high-spatial-resolution diffusion tensor tractography. Magn Reson Imaging. 2014; 32(7): 796-803. https://doi.org/10.1016/j.mri.2014.04.002.
5. Vanni S, Tanskanen T, Seppä M et al. Coinciding early activation of the human primary visual cortex and anteromedial cuneus. Proc Natl Acad Sci USA. 2001; 98: 2776-80.
6. Cho J, Liao E, Trobe JD. Visual Field Defect Patterns Associated With Lesions of the Retrochiasmal Visual Pathway. J Neuroophthalmol. 2022; 42(3): 353-9. http://doi.org/10.1097/WNO.0000000000001601.
7. Becker-Bense S, Buchholz HG, zu Eulenburg P et al. Ventral and dorsal streams processing visual motion perception (FDG-PET study). BMC Neurosci. 2012; 13: 81. https://doi.org/10.1186/1471-2202-13-81.
8. Miller AM, Obermeyer WH, Behan M et al. The superior colliculus–pretectum mediates the direct effects of light on sleep. Proc Natl Acad Sci USA. 1998; 95: 8957-62. http://doi.org/10.1073/pnas.95.15.8957.
9. Kozicz T, Bittencourt JC, May PJ et al. The Edinger-Westphal nucleus: A historical, structural, and functional perspective on a dichotomous terminology. J Comp Neurol. 2011; 519: 1413-34. https://doi.org/10.1002/cne.22580.
10. Hillis AE, Wityk RJ, Barker PB et al. Subcortical aphasia and neglect in acute stroke: the role of cortical hypoperfusion. Brain. 2002; 125(5): 1094-104. https://doi.org/10.1093/brain/awf113.
11. Monga S. Perimetry in Neurological Disorders. In: Resolving Dilemmas in Perimetry. Patyal S, Gandhi M. (eds.). Springer, Singapore 2021. https://doi.org/10.1007/978-981-16-2601-2_11.
12. Swienton DJ, Thomas AG. The Visual Pathway – Functional Anatomy and Pathology. Semin Ultrasound CT MR. 2014; 35(5): 487-503. https://doi.org/10.1053/j.sult.2014.06.007.
13. Farrash FA, Hassounah M, Helmi HA et al. Rathke’s cleft cyst presentation mimicking craniopharyngioma: Case report. Int J Surg Case Rep. 2020; 68: 104-6. https://doi.org/10.1016/j.ijscr.2020.01.035.
14. Lake MG, Krook LS, Cruz SV. Pituitary adenomas: an overview. Am Fam Physician. 2013; 88(5): 319-27.
15. Matuszek B, Nowakowski A, Paszkowski T et al. Gonadotropinoma in the menopausal period: practical guidelines. Menopause Review/Przegląd Menopauzalny. 2012; 11(3): 183-6.
16. Andino-Ríos GG, Portocarrero-Ortiz L, Rojas-Guerrero C et al. Nonfunctioning Pituitary Adenoma That Changed to a Functional Gonadotropinoma. Case Rep Endocrinol. 2018; 2018: 5027859. https://doi.org/10.1155/2018/5027859.
17. Thakkar A, Kannan S, Hamrahian A et al. Testicular “hyperstimulation” syndrome: a case of functional gonadotropinoma. Case Rep Endocrinol. 2014; 2014: 194716. https://doi.org/10.1155/2014/194716.
18. Oommen S, Rice S. Case Report: Atypical presentation of non-functional gonadotropinoma. F1000Res. 2023; 12: 674. http://doi.org/10.12688/f1000research.133438.1.
19. Prete A, Corsello SM, Salvatori R. Current best practice in the management of patients after pituitary surgery. Ther Adv Endocrinol Metab. 2017; 8(3): 33-48. http://doi.org/10.1177/2042018816687240.
20. Cote DJ, Smith TR, Sandler CN et al. Functional Gonadotroph Adenomas: Case Series and Report of Literature. Neurosurgery. 2016; 79(6): 823-31. http://doi.org/10.1227/NEU.0000000000001188.
21. Thammakumpee K, Buddawong J, Vanikieti K et al. Preoperative Peripapillary Retinal Nerve Fiber Layer Thickness as the Prognostic Factor of Postoperative Visual Functions After Endoscopic Transsphenoidal Surgery for Pituitary Adenoma. Clin Ophthalmol. 2022; 16: 4191-8. http://doi.org/10.2147/OPTH.S392987.