The morphology of epiretinal membranes in SS-OCT and SS-OCT angiography and its impact on surgical outcomes Review article

Main Article Content

Bartosz Biliński
Zofia Anna Nawrocka

Abstract

The aim of this review is to revisit the current state of knowledge regarding epiretinal membranes, explore current methods of medical diagnosis, and assess the impact of Swept-source OCT (SS-OCT) and SS-OCT angiography (SS-OCT A) on therapeutic procedures. Several attempts have been made to establish a staging classification system for this well-known retinal pathology, yet not all of them proved to be clinically useful. This work intends to improve understanding of the pathophysiology of the disease, selecting the most important symptoms to aid classification according to the stage of advancement and correct recognition of the appropriate moment of surgical intervention to achieve a better postoperative effect. This article demonstrates the benefits of using SS-OCT and SS-OCT A in the treatment of epiretinal membrane, describing the morphological changes of the retina that can be observed.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Biliński B, Nawrocka ZA. The morphology of epiretinal membranes in SS-OCT and SS-OCT angiography and its impact on surgical outcomes. Ophthatherapy [Internet]. 2024Sep.30 [cited 2025Jan.22];11(3):229-35. Available from: https://journalsmededu.pl/index.php/ophthatherapy/article/view/3037
Section
Diagnostics

References

1. Ting FSM, Kwok AKH. Treatment of epiretinal membrane: an update. Hong Kong Med J. 2005; 11(6): 496.
2. Coppe AM, Lapucci G, Gilardi M et al. Alterations of macular blood flow in superficial and deep capillary plexuses in the fellow and affected eyes of patients with unilateral idiopathic epiretinal membrane. Retina. 2020; 40(8): 1540-8. http://doi.org/10.1097/IAE.0000000000002617.
3. Rejdak R, Rękas M. Siatkówka i ciało szkliste. Basic and Clinical Science Course. Urban & Partner, Wroclaw 2020: 370.
4. Szaflik J, Izdebska J, Bowling B. Okulistyka Kliniczna. Edra Urban & Partner, Wroclaw 2017: 618.
5. da Silva RA, Roda VM, Matsuda M et al. Cellular components of the idiopathic epiretinal membrane. Graefes Arch Clin Exp Ophthalmol. 2022; 260(5): 1435-44. http://doi.org/10.1007/s00417-021-05492-7.
6. Klein R, Klein BE, Wang Q et al. The epidemiology of epiretinal membranes. Trans Am Ophthalmol Soc. 1994; 92: 403-25.
7. Iwanoff A. Beiträge zur normalen und pathologischen Anatomie des Auges. Albrecht von Graefes Archiv Für Ophthalmologie. 1865.
8. Mitchell P, Smith W, Chey T et al. Prevalence and Associations of Epiretinal Membranes: The Blue Mountains Eye Study, Australia. Ophthalmology. 1997; 104(6): 1033-40. http://doi.org/10.1016/S0161-6420(97)30190-0.
9. Chan R, Collin MHB. Epiretinal membrane with macular pucker. Clin Exp Optom. 2000; 83(4): 222-5. http://doi.org/10.1111/j.1444-0938.2000.tb05005.x Chan R, Collin MHB. Epiretinal membrane with macular pucker. Clin Exp Optom. 2000; 83(4): 222-5. http://doi.org/10.1111/j.1444-0938.2000.tb05005.x.
10. Stevenson W, Prospero Ponce CM, Agarwal DR et al. Epiretinal membrane: optical coherence tomography-based diagnosis and classification. Clin Ophthalmol. 2016; 10: 527-34. http://doi.org/10.2147/OPTH.S97722.
11. Vishwakarma S, Gupta RK, Jakati S et al. Molecular assessment of epiretinal membrane: Activated microglia, oxidative stress, and inflammation. Antioxidants. 2020; 9(8): 654. http://doi.org/10.3390/antiox9080654.
12. Xiao W, Chen X, Yan W et al. Prevalence and risk factors of epiretinal membranes: a systematic review and meta-analysis of population- based studies. BMJ Open. 2017; 7: e014644. http://doi.org/10.1136/bmjopen-2016-014644.
13. Aung KZ, Makeyeva G, Adams MK et al. The prevalence and risk factors of epiretinal membranes: The Melbourne Collaborative Cohort Study. Retina. 2013; 33(5): 1026-34. http://doi.org/10.1097/IAE.0b013e3182733f25.
14. Nawrocka ZA, Trebinska M, Nawrocka Z et al. Idiopathic epiretinal membranes: postoperative changes in morphology. Can J Ophthalmol. 2023; 58(6): 582-91. http://doi.org/10.1016/j.jcjo.2022.06.023.
15. Alibhai YA, Or C, Witkin AJ. Swept Source Optical Coherence Tomography: a Review. Curr Ophthalmol Rep. 2018; 6: 7-16. http://doi.org/10.1007/s40135-018-0158-3.
16. Kishi S. Impact of swept source optical coherence tomography on ophthalmology. Taiwan J Ophthalmol. 2016; 6: 58-68.
17. Kim JH, Kim YM, Chung EJ et al. Structural and Functional Predictors of Visual Outcome of Epiretinal Membrane Surgery. Am J Ophthalmol. 2012; 153(1): 103-10.e1. http://doi.org/10.1016/j.ajo.2011.06.021.
18. Gass JDM. Stereoscopic Atlas of Macular Disease. Mosby, St. Louis 1987: 693-5.
19. Hwang J-U, Sohn J, Moon BG et al. Assessment of macular function for idiopathic epiretinal membranes classified by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012; 53(7): 3562-9. http://doi.org/10.1167/iovs.12-9762.
20. Itoh Y, Inoue M, Rii T et al. Correlation between foveal cone outer segment tips line and visual recovery after epiretinal membrane surgery. Invest Ophthalmol Vis Sci. 2013; 54(12): 7302. http://doi.org/10.1167/iovs.13-12702.
21. Konidaris V, Androudi S, Alexandridis A et al. Optical coherence tomography-guided classification of epiretinal membranes. Int Ophthalmol. 2015; 35: 495-501. http://doi.org/10.1007/s10792-014-9975-z .
22. Miguel AIM, Legris A. Prognostic factors of epiretinal membranes: a systematic review. J Fr Ophtalmol. 2017; 40(1): 61-79. http://doi.org/10.1016/j.jfo.2016.12.001.
23. Rouvas A, Chatziralli I, Androu A et al. Long-Term Anatomical and Functional Results in Patients Undergoing Observation for Idiopathic Nontractional Epiretinal Membrane. Eur J Ophthalmol. 2016; 26(3): 273-8. http://doi.org/10.5301/ejo.5000693.
24. Theodossiadis PG, Grigoropoulos VG, Kyriaki T et al. Evolution of Idiopathic Epiretinal Membrane Studied by Optical Coherence Tomography. Eur J Ophthalmol. 2008; 18(6): 980-8. http://doi.org/10.1177/112067210801800620.
25. Govetto A, Lalane RA, Sarraf D et al. Insights into epiretinal membranes: presence of ectopic inner foveal layers and a new optical coherence tomography staging scheme. Am J Ophthalmol. 2017; 175: 99-113. http://doi.org/10.1016/j.ajo.2016.12.006.
26. Tsunoda K, Watanabe K, Akiyama K et al. Highly reflective foveal region in optical coherence tomography in eyes with vitreomacular traction or epiretinal membrane. Ophthalmology. 2012; 119(3): 581-7. http://doi.org/10.1016/j.ophtha.2011.08.026.
27. Karasavvidou EM, Panos GD, Koronis S et al. Optical coherence tomography biomarkers for visual acuity in patients with idiopathic epiretinal membrane. Eur J Ophthalmol. 2021; 31(6): 3203-13.
28. Michalewska Z, Michalewski J, Adelman RA et al. Choroidal thickness measured with swept source optical coherence tomography before and after vitrectomy with internal limiting membrane peeling for idiopathic epiretinal membranes. Retina. 2015; 35(3): 487-91. http://doi.org/10.1097/IAE.0000000000000350.
29. Rizzo S, Savastano A, Finocchio L et al. Choroidal vascularity index changes after vitreomacular surgery. Acta Ophthalmol. 2018; 96(8): e950-e5. http://doi.org/10.1111/aos.13776.
30. Michalewska Z, Michalewski J, Ornafel-Sagan K et al. Swept-source optical coherence tomography correlations between retina and choroid before and after vitrectomy for epiretinal membranes. Am J Ophthalmol. 2016; 165: 100-7. http://doi.org/10.1016/j.ajo.2016.02.003.
31. Zobor G, Sacu S, Hollaus M et al. The postoperative course of choroidal and central retinal thickness in epiretinal membranes with respect to membrane severity. Ophthalmic Res. 2021; 64(6): 1020-8. http://doi.org/10.1159/000519272.
32. Muijzer MB, Schellekens PA, Beckers HJM et al. Clinical applications for intraoperative optical coherence tomography: a systematic review. Eye. 2022; 36: 379-91. http://doi.org/10.1038/s41433-021-01686-9.
33. Kitagawa Y, Shimada H, Shinojima A et al. Foveal avascular zone area analysis using optical coherence tomography angiography before and after idiopathic epiretinal membrane surgery. Retina. 2017; 0: 1-8.
34. Mastropasqua R, D’Aloisio R, Viggiano P et al. Early retinal flow changes after vitreoretinal surgery in idiopathic epiretinal membrane using swept source optical coherence tomography angiography. J Clin Med. 2019; 8(12): 2067. http://doi.org/10.3390/jcm8122067.
35. Mao J, Lao J, Liu C et al. A study analyzing macular microvasculature features after vitrectomy using OCT angiography in patients with idiopathic macular epiretinal membrane. BMC Ophthalmol. 2020; 20(1): 165. http://doi.org/10.1186/s12886-020-01429-6.
36. Fang IM, Chen LL. Association of macular choroidal thickness with optical coherent tomography morphology in patients with idiopathic epiretinal membrane. PLOS ONE. 2020; 15(9): e0239992. https://doi.org/10.1371/journal.pone.0239992.
37. Michalewska Z, Nawrocka Z, Nawrocki J. Swept-Source OCT and Swept-Source OCT Angiography Before and After Vitrectomy with Stuffing of the Optic Pit. Ophthalmology Retina. 2020; 4(9): 927-37. http://doi.org/10.1016/j.oret.2020.03.025.
38. Michalewska Z, Nawrocki J. Swept-source optical coherence tomography angiography reveals internal limiting membrane peeling alters deep retinal vasculature. Retina. 2018; 38: S154-S160.