The role of epithelial thickness mapping in corneal refractive surgery Review article
Main Article Content
Abstract
Refractive surgery has stimulated significant progress in anterior segment imaging. Knowledge of epithelial thickness profile considerably increases the efficacy and safety of refractive procedures. This review aims to present new technologies evaluating corneal epithelial thickness and the most important clinical applications in the field of corneal refractive surgery.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright: © Medical Education sp. z o.o. License allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Address reprint requests to: Medical Education, Marcin Kuźma (marcin.kuzma@mededu.pl)
References
2. Wilson SE, Lin DT, Klyce SD. Corneal topography of keratoconus. Cornea. 1991; 10: 2-8.
3. Schiano-Lomoriello D, Bono V, Abicca I et al. Repeatability of anterior segment measurements by optical coherence tomography combined with Placido disk corneal topography in eyes with keratoconus. Sci Rep. 2020; 10: 1124.
4. Reinstein DZ, Yap TE, Archer TJ et al. Comparison of corneal epithelial thickness measurement between Fourier-domain OCT and very high-frequency digital ultrasound. J Refract Surg. 2015; 31: 438-45.
5. Reinstein DZ, Silverman RH, Coleman DJ. High-frequency ultrasound measurement of the thickness of the corneal epithelium. Refract Corneal Surg. 1993; 9: 385-7.
6. Reinstein DZ, Archer TJ, Gobbe M et al. Epithelial thickness in the normal cornea: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2008; 24: 571-81.
7. Reinstein DZ, Archer TJ, Gobbe M. Corneal epithelial thickness profile in the diagnosis of keratoconus. J Refract Surg. 2009; 25: 604-10.
8. Reinstein DZ, Silverman RH, Raevsky T et al. Arc-scanning very high-frequency digital ultrasound for 3D pachymetric mapping of the corneal epithelium and stroma in laser in situ keratomileusis. J Refract Surg. 2000; 16: 414-30.
9. Izatt JA, Hee MR, Swanson EA et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994; 112: 1584-9.
10. Huang D, Swanson EA, Lin CP et al. Optical coherence tomography. Science. 1991; 254: 1178-81.
11. Hashmani N, Hashmani S, Saad CM. Wide corneal epithelial mapping using an optical coherence tomography. Invest Ophthalmol Vis Sci. 2018; 59: 1652-8.
12. Li Y, Tang M, Zhang X et al. Pachymetric mapping with Fourier-domain optical coherence tomography. J Cataract Refract Surg. 2010; 36: 826-31.
13. Christopoulos V, Kagemann L, Wollstein G et al. In vivo corneal high-speed, ultra high-resolution optical coherence tomography. Arch Ophthalmol. 2007; 125: 1027-35.
14. Sarunic MV, Asrani S, Izatt JA. Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography. Arch Ophthalmol. 2008; 126: 537-42.
15. Sella R, Zangwill LM, Weinreb RN et al. Repeatability and reproducibility of corneal epithelial thickness mapping with spectral-domain optical coherence tomography in normal and diseased cornea eyes. Am J Ophthalmol. 2019; 197: 88-97.
16. Prakash G, Agarwal A, Jacob S et al. Comparison of fourier-domain and time-domain optical coherence tomography for assessment of corneal thickness and intersession repeatability. Am J Ophthalmol. 2009; 148: 282-90.
17. Tang M, Li Y, Chamberlain W et al. Differentiating keratoconus and corneal warpage by analyzing focal change patterns in corneal topography, pachymetry, and epithelial thickness maps. Invest Ophthalmol Vis Sci. 2016; 57: OCT544-OCT9.
18. Savini G, Schiano-Lomoriello D, Hoffer KJ. Repeatability of automatic measurements by a new anterior segment optical coherence tomographer combined with Placido topography and agreement with 2 Scheimpflug cameras. J Cataract Refract Surg. 2018; 44: 471-8.
19. Vega-Estrada A, Mimouni M, Espla E et al. Corneal epithelial thickness intrasubject repeatability and its relation with visual limitation in keratoconus. Am J Ophthalmol. 2019; 200: 255-62.
20. Kanclerz P, Hoffer KJ, Rozema JJ et al. Repeatability and reproducibility of optical biometry implemented in a new optical coherence tomographer and comparison with a optical low-coherence reflectometer. J Cataract Refract Surg. 2019; 45: 1619-24.
21. Li Y, Gokul A, McGhee C et al. Repeatability of corneal and epithelial thickness measurements with anterior segment optical coherence tomography in keratoconus. PLoS One. 2021; 16: e0248350.
22. Hanna C, O’Brien JE. Cell production and migration in the epithelial layer of the cornea. Arch Ophthalmol. 1960; 64: 536-9.
23. Reinstein DZ, Silverman RH, Trokel SL et al. Corneal pachymetric topography. Ophthalmology. 1994; 101: 432-8.
24. Simon G, Ren Q, Kervick GN et al. Optics of the corneal epithelium. Refract Corneal Surg. 1993; 9: 42-50.
25. Silverman RH, Urs R, Roychoudhury A et al. Epithelial remodeling as basis for machine-based identification of keratoconus. Invest Ophthalmol Vis Sci. 2014; 55: 1580-7.
26. Khachikian SS, Belin MW. Posterior elevation in keratoconus. Ophthalmology. 2009; 116(4): 816, 816.e1.
27. de Sanctis U, Loiacono C, Richiardi L et al. Sensitivity and specificity of posterior corneal elevation measured by Pentacam in discriminating keratoconus/subclinical keratoconus. Ophthalmology. 2008; 115: 1534-9.
28. Scroggs MW, Proia AD. Histopathological variation in keratoconus. Cornea. 1992; 11: 553-9.
29. Schallhorn JM, Tang M, Li Y et al. Distinguishing between contact lens warpage and ectasia: usefulness of optical coherence tomography epithelial thickness mapping. J Cataract Refract Surg. 2017; 43: 60-6.
30. Buffault J, Zeboulon P, Liang H et al. Assessment of corneal epithelial thickness mapping in epithelial basement membrane dystrophy. PLoS One. 2020; 15: e0239124.
31. Cui X, Hong J, Wang F et al. Assessment of corneal epithelial thickness in dry eye patients. Optom Vis Sci. 2014; 91: 1446-54.
32. Salomao MQ, Hofling-Lima AL, Lopes BT et al. Role of the corneal epithelium measurements in keratorefractive surgery. Curr Opin Ophthalmol. 2017; 28: 326-36.
33. Reinstein DZ, Archer TJ, Gobbe M. Change in epithelial thickness profile 24 hours and longitudinally for 1 year after myopic LASIK: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2021; 28: 195-201.
34. Reinstein DZ, Archer TJ, Gobbe M. Rate of change of curvature of the corneal stromal surface drives epithelial compensatory changes and remodeling. J Refract Surg. 2014; 30: 799-802.
35. Lohmann CP, Guell JL. Regression after LASIK for the treatment of myopia: the role of the corneal epithelium. Semin Ophthalmol. 1998; 13: 79-82.
36. Gauthier CA, Holden BA, Epstein D et al. Role of epithelial hyperplasia in regression following photorefractive keratectomy. Br J Ophthalmol. 1996; 80: 545-8.
37. Lohmann CP, Reischl U, Marshall J. Regression and epithelial hyperplasia after myopic photorefractive keratectomy in a human cornea. J Cataract Refract Surg. 1999; 25: 712-5.
38. Reinstein DZ, Srivannaboon S, Gobbe M et al. Epithelial thickness profile changes induced by myopic LASIK as measured by Artemis very high-frequency digital ultrasound. J Refract Surg. 2009; 25: 444-50.
39. Reinstein DZ, Archer TJ, Gobbe M et al. Epithelial thickness after hyperopic LASIK: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2010; 26: 555-64.
40. Varley GA, Huang D, Rapuano CJ et al. LASIK for hyperopia, hyperopic astigmatism, and mixed astigmatism: a report by the American Academy of Ophthalmology. Ophthalmology. 2004; 111: 1604-17.
41. Vinciguerra P, Camesasca FI, Morenghi E et al. Corneal apical scar after hyperopic excimer laser refractive surgery: long-term follow-up of treatment with sequential customized therapeutic keratectomy. J Refract Surg. 2018; 34: 113-20.
42. Hwang ES, Schallhorn JM, Randleman JB. Utility of regional epithelial thickness measurements in corneal evaluations. Surv Ophthalmol. 2020; 65: 187-204.