Fuchs dystrophy: insight into disease pathophysiology and treatment Review article

Main Article Content

Anna Micińska
Anna Nowińska
Adam Sendecki
Edward Wylęgała

Abstract

Fuchs endothelial corneal dystrophy (FECD) is a bilateral, progressive disease originating in corneal endothelial cells. Fuchs endothelial corneal dystrophy slowly progresses, causing endothelial cell loss, subsequent corneal stromal and epithelial edema, leading to visual acuity impairment and ocular pain. Fuchs endothelial corneal dystrophy was first documented more than a hundred years ago – in 1910, when Viennese ophthalmologist Ernst Fuchs reported 13 elderly patients with bilateral central clouding. Since then, there have been a far-reaching progress in terms of pathogenesis, knowledge of etiological factors, as well as progress in diagnosis and treatment. Despite that, there are still many questions remaining unanswered, especially in the field of the genetic basis of FECD and the molecular pathomechanisms. The aim of this review is to present and discuss clinical, genetic, pathophysiologic, diagnostic and therapeutic aspects of this common corneal dystrophy. The article also focuses on innovative methods of imagining including high-resolution optical coherence tomography. Moreover, we highlight and discuss the development of traditional surgical treatment options and new minimally invasive techniques such as descemetorhexis without endothelial keratoplasty (DWEK) and Rho-associated kinase inhibitor (ROCK inhibitors) eye drops.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Micińska A, Nowińska A, Sendecki A, Wylęgała E. Fuchs dystrophy: insight into disease pathophysiology and treatment. Ophthatherapy [Internet]. 2020Sep.30 [cited 2024Dec.22];7(3):213-24. Available from: https://journalsmededu.pl/index.php/ophthatherapy/article/view/1090
Section
Conservative treatment

References

1. Weiss JS, Møller HU, Aldave AJ et al. IC3D classification of corneal dystrophies-edition 2. Cornea. 2015; 34: 117-59.
2. Adamis AP, Filatov V, Tripathi BJ et al. Fuchs’ endothelial dystrophy of the cornea. Surv Ophthalmol. 1993; 38: 149-68.
3. Elhalis H, Azizi B, Jurkunas UV. Fuchs endothelial corneal dystrophy. Ocul Surf. 2010; 8: 173-84.
4. Santo RM, Yamaguchi T, Kanai A et al. Clinical and Histopathologic Features of Corneal Dystrophies in Japan. Ophthalmology. 1995; 102: 557-67.
5. Krachmer JH, Purcell JJ, Young CW et al. Corneal Endothelial Dystrophy: A Study of 64 Families. Arch Ophthalmol. 1978; 96: 2036-9.
6. Zoega GM, Fujisawa A, Sasaki H et al. Prevalence and Risk Factors for Cornea Guttata in the Reykjavik Eye Study. Ophthalmology. 2006; 113: 565-9.
7. Soh YQ, Kocaba V, Pinto M et al. Fuchs endothelial corneal dystrophy and corneal endothelial diseases: East meets West. Eye. 2019.
8. Luchs JL, Cohen EJ, Rapuano CJ et al. Ulcerative keratitis in bullous keratopathy. Ophthalmology. 1997; 104: 816-22.
9. Burns RR, Bourne WM, Brubaker RF. Endothelial function in patients with cornea guttata. Investig Ophthalmol Vis Sci. 1981; 20: 77-85.
10. Vedana G, Villarreal G, Jun AS. Fuchs endothelial corneal dystrophy: Current perspectives. Clin Ophthalmol. 2016; 10: 321-30.
11. Soh YQ, Mehta JS. Regenerative Therapy for Fuchs Endothelial Corneal Dystrophy. Cornea. 2018; 37: 523-7.
12. Siu GDJY, Young AL, Jhanji V. Alternatives to corneal transplantation for the management of bullous keratopathy. Curr Opin Ophthalmol. 2014; 25: 347-52.
13. Williams KA, Irani YD. Gene Therapy and Gene Editing for the Corneal Dystrophies. Asia-Pacific J Ophthalmol. 2016; 5: 312-6.
14. Zhu AY, Jaskula-Ranga V, Jun AS. Gene editing as a potential therapeutic solution for Fuchs endothelial corneal dystrophy the future is clearer. JAMA Ophthalmol. 2018; 136: 969-70.
15. Louttit MD, Kopplin LJ, Jr RPI et al. A Multi-Center Study to Map Genes for Fuchs’ Endothelial Corneal Dystrophy: Baseline Characteristics and Heritability. Cornea. 2012; 31: 26-35.
16. Biswas S. Missense mutations in COL8A2, the gene encoding the alpha2 chain of type VIII collagen, cause two forms of corneal endothelial dystrophy. Hum Mol Genet. 2001; 10: 2415-23.
17. Afshari NA, Li YJ, Pericak-Vance MA et al. Genome-wide linkage scan in Fuchs endothelial corneal dystrophy. Investig Ophthalmol Vis Sci. 2009; 50: 1093-7.
18. Jurkunas UV, Bitar M, Rawe I. Colocalization of increased transforming growth factor-beta-induced protein (TGFBIp) and Clusterin in Fuchs endothelial corneal dystrophy. Invest Ophthalmol Vis Sci. 2009; 50(3): 1129‐36.
19. Park M, Li Q, Shcheynikov N et al. NaBC1 Is a Ubiquitous Electrogenic Na+ -Coupled Borate Transporter Essential for Cellular Boron Homeostasis and Cell Growth and Proliferation. Mol Cell. 2004; 16: 331-41.
20. Jalimarada SS, Ogando DG, Vithana EN et al. Ion transport function of SLC4A11 in corneal endothelium. Investig Ophthalmol Vis Sci. 2013; 54: 4330-40.
21. Kao L, Azimov R, Abuladze N et al. Human SLC4A11-C functions as a DIDS-stimulatable H+(OH-) permeation pathway: Partial correction of R109H mutant transport. Am J Physiol – Cell Physiol. 2015; 308: C176-88.
22. Li S, Hundal KS, Chen X et al. R125H, W240S, C386R, and V507I SLC4A11 mutations associated with corneal endothelial dystrophy affect the transporter function but not trafficking in PS120 cells. Exp Eye Res. 2019; 180: 86-91.
23. Riazuddin SA, Parker DS, McGlumphy et al. Mutations in LOXHD1, a recessive-deafness locus, cause dominant late-onset Fuchs corneal dystrophy. Am J Hum Genet. 2012; 90: 533-9.
24. Riazuddin SA, Zaghloul NA, Al-Saif A et al. Missense Mutations in TCF8 Cause Late-Onset Fuchs Corneal Dystrophy and Interact with FCD4 on Chromosome 9p. Am J Hum Genet. 2010; 86: 45-53.
25. Cano A, Portillo F. An emerging role for class I bHLH E2-2 proteins in EMT regulation and tumour progression. Cell Adhes Migr. 2010; 4: 56-60.
26. Wieben ED, Aleff RA, Tosakulwong N et al. A Common Trinucleotide Repeat Expansion within the Transcription Factor 4 (TCF4, E2-2) Gene Predicts Fuchs Corneal Dystrophy. PLoS One. 2012; 7: 5-12.
27. Soh YQ, Lim GPS, Htoon HM et al. Trinucleotide repeat expansion length as a predictor of the clinical progression of Fuchs’ Endothelial Corneal Dystrophy. PLoS One. 2019; 14: 1-12.
28. Pan P, Weisenberger DJ, Zheng S et al. Aberrant DNA methylation of miRNAs in Fuchs endothelial corneal dystrophy. Sci Rep. 2019; 9: 59304.
29. Kerr K, Mcaneney H, Smyth L et al. Systematic review of differential methylation in rare ophthalmic diseases. BMJ Open Ophthalmol. 2019; 4.
30. Jurkunas UV, Bitar MS, Funaki T et al. Evidence of oxidative stress in the pathogenesis of Fuchs endothelial corneal dystrophy. Am J Pathol. 2010; 177: 2278-89.
31. Tone SO, Kocaba V, Böhm M et al. Fuchs endothelial corneal dystrophy: The vicious cycle of Fuchs pathogenesis. Prog Retin Eye Res. 2020; 100863.
32. Miyajima T, Melangath G, Zhu S et al. Loss of NQO1 generates genotoxic estrogen-DNA adducts in Fuchs Endothelial Corneal Dystrophy. Free Radic Biol Med. 2020; 147: 69-79.
33. Liu C, Miyajima T, Melangath G et al. Ultraviolet A light induces DNA damage and estrogen-DNA adducts in Fuchs endothelial corneal dystrophy causing females to be more affected. Proc Natl Acad Sci U S A. 2020; 117: 573-83.
34. Miyajima T, Melangath G, Zhu S et al. Loss of NQO1 generates genotoxic estrogen-DNA adducts in Fuchs Endothelial Corneal Dystrophy. Free Radic Biol Med. 2020; 147: 69-79.
35. Zhang X, Igo RP, Fondran J et al. Association of smoking and other risk factors with Fuchs’ endothelial corneal dystrophy severity and corneal thickness. Investig Ophthalmol Vis Sci. 2013; 54: 5829-35.
36. Wacker K, Mclaren JW, Patel SV. Directional Posterior Corneal Profile Changes in Fuchs’ Endothelial Corneal Dystrophy. Invest Ophthalmol Vis Sci. 2015: 5904-11.
37. Loreck N, Adler W, Siebelmann S et al. Morning myopic shift and glare in advanced Fuchs endothelial corneal dystrophy. Am J Ophthalmol. 2020; 213: 69-75.
38. Ong Tone S, Jurkunas U. Imaging the Corneal Endothelium in Fuchs Corneal Endothelial Dystrophy. Semin Ophthalmol. 2019; 34: 340-6.
39. Chiou AGY, Kaufman SC, Beuerman RW et al. Confocal microscopy in cornea guttata and Fuchs’ endothelial dystrophy. Br J Ophthalmol. 1999; 83: 185-9.
40. Sun SY, Wacker K, Baratz KH et al. Determining Subclinical Edema in Fuchs Endothelial Corneal Dystrophy: Revised Classification using Scheimpflug Tomography for Preoperative Assessment. Ophthalmology. 2019; 126: 195-204.
41. Repp DJ, Hodge DO, Baratz KH et al. Fuchs’ endothelial corneal dystrophy: Subjective grading versus objective grading based on the central-to-peripheral thickness ratio. Ophthalmology. 2013; 120: 687-94.
42. Eleiwa T, Elsawy A, Tolba M et al. Diagnostic Performance of 3-Dimensional Thickness of the Endothelium–Descemet Complex in Fuchs’ Endothelial Cell Corneal Dystrophy. Ophthalmology. 2020; 127(7): 874-87.
43. Wacker K, Baratz KH, Maguire LJ et al. Descemet Stripping Endothelial Keratoplasty for Fuchs’ Endothelial Corneal Dystrophy: Five- Year Results of a Prospective Study. Ophthalmology. 2016; 123: 154-60.
44. Mathews PM, Lindsley K, Aldave AJ et al. Etiology of Global Corneal Blindness and Current Practices of Corneal Transplantation: A Focused Review. Cornea. 2018; 37: 1198-203.
45. Chan SWS, Yucel Y, Gupta N. New trends in corneal transplants at the University of Toronto. Can J Ophthalmol. 2018; 53: 580-7.
46. Palma-Carvajal F, Morales P, Salazar-Villegas A et al. Trends in corneal transplantation in a single center in Barcelona, Spain. Transitioning to DMEK. J Fr Ophtalmol. 2020; 43: 1-6.
47. Jankowska-Szmul J, Wylegala E. The CLASS Surgical Site Characteristics in a Clinical Grading Scale and Anterior Segment Optical Coherence Tomography: A One-Year Follow-Up. J Healthc Eng. 2018: 1-13.
48. Ehlers N, Hjortdal J. Riboflavin-ultraviolet light induced cross-linking in endothelial decompensation. Acta Ophthalmol. 2008; 86: 549-51.
49. Chawla B, Sharma N, Tandon R et al. Comparative evaluation of phototherapeutic keratectomy and amniotic membrane transplantation for management of symptomatic chronic bullous keratopathy. Cornea. 2010; 29: 976-9.
50. Okumura N, Ueno M, Koizumi N et al. Enhancement on Primate Corneal Endothelial Cell Survival In Vitro by a ROCK Inhibitor. Invest Ophthalmol Vis Sci. 2009; 50: 3680-7.
51. Koizumi N, Okumura N, Ueno M et al. New therapeutic modality for corneal endothelial disease using Rho-associated kinase inhibitor eye drops. Cornea. 2014; 33: S25-31.
52. Mimura T, Yamagami S, Yokoo S et al. Cultured human corneal endothelial cell transplantation with a collagen sheet in a rabbit model. Invest Ophthalmol Vis Sci. 2004; 45(9): 2992‐97.
53. Ishino Y, Sano Y, Nakamura T et al. Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Investig Ophthalmol Vis Sci. 2004; 45: 800-6.
54. Sumide T, Nishida K, Yamato M et al. Functional human corneal endothelial cell sheets harvested from temperature‐responsive culture surfaces. FASEB J. 2006; 20: 392-4.
55. Koizumi N, Sakamoto Y, Okumura N et al. Cultivated corneal endothelial cell sheet transplantation in a primate model. Investig Ophthalmol Vis Sci. 2007; 48: 4519-26.
56. Okumura N, Kinoshita S, Koizumi N. Cell-based approach for treatment of corneal endothelial dysfunction. Cornea. 2014; 33: S37-41.
57. Kinoshita S, Koizumi N, Ueno M et al. Injection of cultured cells with a ROCK inhibitor for bullous keratopathy. N Engl J Med. 2018; 378: 995-1003.
58. Borkar DS, Veldman P, Colby KA. Treatment of fuchs endothelial dystrophy by Descemet stripping without endothelial keratoplasty. Cornea. 2016; 35: 1267-73.
59. Huang MJ, Kane S, Dhaliwal DK. Descemetorhexis without Endothelial Keratoplasty Versus DMEK for Treatment of Fuchs Endothelial Corneal Dystrophy. Cornea. 2018; 37: 1479-83.
60. Moloney G, Petsoglou C, Ball M et al. Descemetorhexis without grafting for Fuchs endothelial dystrophy-supplementation with topical ripasudil. Cornea. 2017; 36: 642-8.
61. Ploysangam P, Patel SP. A Case Report Illustrating the Postoperative Course of Descemetorhexis without Endothelial Keratoplasty with Topical Netarsudil Therapy. Case Rep Ophthalmol Med. 2019; 2019: 1-7.
62. Cabral T, DiCarlo JE, Justus S et al. CRISPR applications in ophthalmologic genome surgery. Curr Opin Ophthalmol. 2017; 28: 252-9.