The use of laser therapy in retinal diseases. Part II Review article

Main Article Content

Katarzyna Warzecha
Agnieszka Tronina
Erita Filipek

Abstract

Retinal diseases account for the vast majority of ophthalmologic disorders. Over the past years, laser-based approach has been successfully used. Despite introduction of other potentially innovative, beneficial and successful therapeutic methods, lasers are still considered the gold standard. In this review, we discuss the spectrum of currently prevailing laser methods and we give a new insight into novel perspectives and techniques regarding laser management of retinal disorders. This paper is divided into three sections. The current one consists of a literature review that investigates the existing knowledge in laser management of diabetic retinopathy, diabetic macular edema and vascular retinal disorders. Finally, it outlines the principles guiding laser treatment of retinal tears, retinal degeneration, retinopathy of prematurity, age-related macular degeneration and other retinal diseases.

Article Details

How to Cite
1.
Warzecha K, Tronina A, Filipek E. The use of laser therapy in retinal diseases. Part II. Ophthatherapy [Internet]. 2020Sep.30 [cited 2020Nov.30];7(3):255-61. Available from: https://journalsmededu.pl/index.php/ophthatherapy/article/view/1073
Section
Surgery and laser therapy

References

1. Partyka I. Zalecane algorytmy postępowania w retinopatii cukrzycowej wg AAO. Okuli Dypl. 2016; 6(6): 31-9.
2. Engd N. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Retinopathy and nephropathy. In: Patients with type 1 diabetes four years after a trial of intensive therapy. J Med. 2000; 342: 381-9.
3. Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA. 2002; 287: 2563-9.
4. Diabetes Control and Complications Trial Research Group. Progression of retinopathy with intensive versus conventional treatment In the Diabetes Control and Complications Trial. Ophthalmology. 1995; 102: 647-61.
5. Diabetes Control and Complications Trial Research Group. The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy In the Diabetes Control and Complications Trial. Diabetes. 1995; 44: 968-83.
6. Bowling B, Kański JJ. Okulistyka Kliniczna. Wydanie 8. Elsevier Urban & Partner, Wrocław 2017: 506-8, 520-56, 561-9, 603-4, 615-7, 623-30, 681-700, 797-8.
7. Gawęcki M. Micropulse Laser Treatmentof Retinal Diseases. J Clin Med. 2019; 8(2): 242.
8. Fotokoagulacja. Leczenie proliferacyjnej retinopatii cukrzycowej. Zastosowanie kliniczne wyników badań retinopatii cukrzycowej (DRS), numer raportu DRS 8. Grupa badawcza ds. retinopatii cukrzycowej. Okulistyka. 1981; 88: 583-600.
9. Early Treatment Diabetic Retinopathy Study Research Group. Early photocoagulation for diabetic retinopathy. ETDRS Report Number 9. Ophthalmology. 1991; 98: 766-85.
10. Gross JG, Glassman AR, Jampol LM et al. Writing Committee for the Diabetic Retinopathy Clinical Research Network. Panretinal Photocoagulation vs Intravitreous Ranibizumab for Proliferative Diabetic Retinopathy: A Randomized Clinical Trial. JAMA. 2015; 314: 2137-46.
11. Sivaprasad S, Prevost AT, Vasconcelos JC et al. Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (CLARITY): A multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial. Lancet. 2017; 389: 2193-203.
12. Ho AC, Scott IU, Kim SJ et al. Anti-vascular endothelial growth factor pharmacotherapy for diabetic macular edema: a report by the AAO. Ophthalmology. 2012; 119: 2179-88.
13. Mitchell P, Bandello F, Schmidt-Erfurth U et al. Restore Study Group: Ranibizumab monotherapy of combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology. 2011; 118: 615-25.
14. Nguyen QD, Brown DM, Marcus DM et al. Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology. 2012; 119: 789-801.
15. Rek M, Jurowski P. Wytyczne EURETINA dotyczące diagnostyki i leczenia cukrzycowego obrzęku plamki żółtej. Okul Dypl. 2018; 8(4): 11-20.
16. Schmidt-Erfurth U, Garcia-Arumi J, Bandello F et al. Guidelines for the Management of Diabetic Macular Edema by the European Society of Retina Specialists (EURETINA). Ophthalmologica. 2017; 237(4): 185-222.
17. Latalska M, Mackiewicz J. Cukrzycowy obrzęk plamki – diagnostyka i leczenie. Okul Dypl. 2018; 8(2): 5-10.
18. Gaca-Wysocka M, Grzybowski M. Zastosowanie lasera nanosekundowego 2RT w leczeniu cukrzycowego obrzęku plamki. OphthaTherapy. 2017; 4(2): 81-4.
19. Pelosini L, Hamilton R, Mohamed M et al. Retina rejuvenation therapy for diabetic macular edema. Retina. 2013; 33: 548-58.
20. Wytyczne postępowania w terapii cukrzycowego obrzęku plamki Polskiego Towarzystwa Okulistycznego. 2017.
21. Wytyczne leczenia obrzęku plamki wtórnego do niedrożności naczyń żylnych siatkówki Polskiego Towarzystwa Okulistycznego. 2014.
22. Kuklo P, Kuklo M, Pieczyński J et al. Laserowe leczenie chorób obturacyjnych naczyń siatkówki; Okul Dypl. 2019; 9(6): 5-9.
23. Li C, Wang R, Liu G et al. Efficacy of panretinal laser in ischemic central retinal vein occlusion: A systemic review. Exp. Ther. Med. 2019; 17(1): 901-10.
24. Central vein occlusion study of photocoagulation therapy. Baseline findings. Central vein occlusion study group. Online J Curr Clin Trials. 1933; 95.
25. Rehak M, Wiedemann P. Retinal vein thrombosis: pathogenesis and management. J Thromb Haemost. 2010; 8(9): 1886-94.
26. Li J, Paulus Y, Shuai Y et al. New Developments In the Classification, Pathogenesis, Risk Factors, Natural History and Treatment of Branch Retinal Vein Occlusion. J. Ophthalmol. 2017; 3: 1-18.
27. Zhou JQ, Xu L, Wang S et al. The 10-year incidence and risk factors of retinal vein occlusion: the Beijing eye study. Ophthalmology. 2013; 120(4): 803-8.
28. Campochiaro PA, Hafiz G, Mir TA et al. Scatter photocoagulation does not reduce macular edema or treatment burden in patients with retinal vein occlusion: the RELATE trial. Ophthalmology. 2015; 122(7): 1426-37.
29. Gunther JB, Altaweel MM. Bevacizumab (Avastin) for the treatment of ocular disease. Survey of Ophthalmology. 2009; 54(3): 372-400.
30. Smiddy WE. Economic considerations of macular edema therapies. Ophthalmology. 2011; 118(9): 1827-33.
31. Tomomatsu Y, Tomomatsu T, Takamura Y et al. Comparative study of combined bevacizumab/targeted photocoagulation vs bevacizumab alone for macular oedema in ischaemic branch retinal vein occlusions. Acta Ophthalmologica. 2016; 94(3): 225-30.
32. Yang CS, Liu JH, Chung YC et.al. Combination therapy with intravitreal bevacizumab and macular grid and scatter laser photocoagulation in patients with macular edema secondary to branch retinal vein occlusion. J Ocul Pharmacol Th. 2015; 31(3): 179-85.
33. Donati S, Barosi P, Bianchi M et al. Combined intravitreal bevacizumab and grid laser photocoagulation for macular edema secondary to branch retinal vein occlusion. Eur J Ophthalmol. 2012; 22(4): 607-14.
34. Shimura M, Yasuda K. Topical bromfenac reduces the frequency of intravitreal bevacizumab in patients with branch retinal vein occlusion. Br J Ophthalmol. 2015; 99(2): 215-19.
35. Ma J, Yao K, Zhang Z et al. 25-gauge vitrectomy and triamcinolone acetonide-assisted internal limiting membrane peeling for chronic cystoid macular edema associated with branch retinal vein occlusion. Retina. 2008; 28(7): 947-56.
36. Pichi F, Specchia C, Vitale L et al. Combination therapy with dexamethasone intravitreal implant and macular grid laser in patients with branch retinal vein occlusion. Am J Ophthalmol. 2014; 157(3): 607-15.
37. Hwang JC, Gelman SK, Fine HF et al. Combined arteriovenous sheathotomy and intraoperative intravitreal triamcinolone acetonide for branch retinal vein occlusion. Brit J Ophthalmol. 2010; 94(11): 1483-9.
38. Riese J, Loukopoulos V, Meier C et al. Combined intravitreal triamcinolone injection and laser photocoagulation in eyes with persistent macular edema after branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2008; 246(12): 1671-6.
39. Azad SV, Salman A, Mahajan D et al. Comparative evaluation between ranibizumab combined with laser and bevacizumab combined with laser versus laser alone for macular oedema secondary to branch retinal vein occlusion. Middle East Afr J Ophthalmol. 2014; 21(4): 296-301.
40. Ozkaya A, Celik U, Alkin Z et al. Comparison between intravitreal triamcinolone with grid laser photocoagulation versus bevacizumab with grid laser photocoagulation combinations for branch retinal vein occlusion. ISRN Ophthalmology. 2013: 8.
41. Ali R.I, Kapoor KG, Khan AN et al. Efficacy of combined intravitreal bevacizumab and triamcinolone for branch retinal vein occlusion. Indian J Ophthalmol. 2014; 62(4): 396-9.
42. Parodi MB, Iacono P, Ravalico G. Intravitreal triamcinolone acetonide combined with subthreshold grid laser treatment for macular oedema in branch retinal vein occlusion: a pilot study. Brit J Ophthalmol. 2008; 92(8): 1046-50.
43. Tsujikawa A, Fujihara M, Iwawaki T et al. Triamcinolone acetonide with vitrectomy for treatment of macular edema associated with branch retinal vein occlusion. Retina. 2005; 25(7): 861-7.
44. Schmidt-Erfurth U, Garcia-Arumi J, Gerendas BS. Guidelines for the management of Retinal Vein Occlusion by the European Society of Retina Specialists (EURETINA). Ophthalmologica. 2019; 242(3): 123-62.
45. Varma DD, Cugati S, Lee AW et al. A review of central retinal artery occlusion: clinical presentation and management. Eye (Lond). 2013; 27(6): 688-97.
46. Opremcak E, Rehmar AJ, Ridenour CD et al. Restoration of retinal blond flow via transluminal Nd:YAG embolysis/embolectomy (TYL/E) for central and branch retinal artery occlusion. Retina. 2008; 28(2): 226-35.
47. Chai F, Du S, Zhao X et al. Reperfusion of occluded branch retinal arterie by trans luminal Nd:YAG laser embolysis combined with intravenous thrombolysis of urokinase. Biosci Rep. 2018; 38(1).
48. Brązert A, Kocięcki J. Oczny zespół niedokrwienny. Okul Dyp. 2018; 8(1): 21-25.
49. Barnett HM, Taylor DW, Eliasziw M et al. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med. 1998; 339(20): 1415-25.
50. Hazin R, Daoud YJ, Khan F. Ocular ischemic syndrome: recent trends In medical management. Curr Opin Ophthalmol. 2009; 20(6): 430-3.
51. Mrejen S, Spaide RF. Optical coherence tomography: Imaging of the choroid and beyond. Surv Ophthalmol. 2013; 58: 387-429.
52. Rochepeau C, Kodjikian L, Garcia MA et al. OCT-Angiography Quantitative Assessment of Choriocapillaris Blood Flow in Central Serous Chorioretinopathy. Am J Ophthalmol. 2018; 194: 26-34.
53. Cakir B, Reich M, Lang SJ et al. Possibilities and Limitations of OCT-Angiography in Patients with Central Serous Chorioretinopathy. Klin Monbl Augenheilkd. 2017; 234: 1161-8.
54. Arora S, Sridharan P, Arora T et al. Subthreshold diode micropulse laser versus observation in acute central serous chorioretinopathy. Clin. Exp. Optom. 2019; 102: 79-85.

Most read articles by the same author(s)