Cardiological complications in viral infections of SARS-CoV-2 and influenza virus – similarities and differences Review article

Main Article Content

Agata Olecka
Jakub Smęt
Grzegorz Jan Horszczaruk
Aleksandra Stangret
Dariusz A. Kosior

Abstract

The health risks of the COVID-19 pandemic are currently the subject of global debate. In the public discourse, SARS-CoV-2 coronavirus infection is often compared with the influenza virus. It was noticed that the route of spread and clinical symptoms, when infected with these viruses, are similar. The similarities also apply to complications in the cardiovascular system. That is why, an attempt to compare cardiological complications in the course of infection with influenza and SARS-CoV-2 viruses seems to be interesting. We juxtaposed differences and similarities in pathomechanisms of both viral infections and their clinical manifestation in cardiovascular system. Inflammatory process including endothelitis and activation of thrombosis look to be more pronounced in COVID-19. It should be noted that lack of massive PCR testing during epidemics of influenza, as it was deployed in pandemic of SARS-CoV-2, may affect statistics of infection and diagnosis of complications.

Downloads

Download data is not yet available.

Article Details

How to Cite
Olecka , A., Smęt , J., Horszczaruk , G. J., Stangret , A., & Kosior , D. A. (2022). Cardiological complications in viral infections of SARS-CoV-2 and influenza virus – similarities and differences. Cardiology in Practice, 15(3-4), 31-40. Retrieved from https://journalsmededu.pl/index.php/kwp/article/view/1789
Section
Dowody medyczne w kardiologii   

References

1. Tschöpe C, Ammirati E, Bozkurt B et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat Rev Cardiol. 2021; 18: 169-93. https://doi.org/10.1038/s41569-020-00435-x.
2. Hamming I, Timens W, Bulthuis ML et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203(2): 631-37. https://doi.org/10.1002/path.1570.
3. Gopal R, Marinelli MA, Alcorn JF. Immune Mechanisms in Cardiovascular Diseases Associated With Viral Infection. Front Immunol. 2020; 11: 570681. https://doi.org/10.3389/fimmu.2020.570681.
4. Gheblawi M, Wang K, Viveiros A et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res. 2020; 126(10): 1456-74. https://doi.org/10.1161/CIRCRESAHA.120.317015.
5. Warner FJ, Smith AI, Hooper NM et al. Angiotensin-converting enzyme-2: a molecular and cellular perspective. Cell Mol Life Sci. 2004; 61(21): 2704-13. https://doi.org/10.1007/s00018-004-4240-7.
6. Liu X, Yang N, Tang J et al. Downregulation of angiotensin-converting enzyme 2 by the neuraminidase protein of influenza A (H1N1) virus. Virus Res. 2014; 185, 64-71. https://doi.org/10.1016/j.virusres.2014.03.010.
7. Varga Z, Flammer AJ, Steiger P et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395(10234): 1417-18.
8. Huang C, Wang Y, Li X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England). 2020; 395(10223): 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5.
9. Linschoten M, Peters S, van Smeden M et al. & CAPACITY-COVID collaborative consortium. Cardiac complications in patients hospitalised with COVID-19. Eur Heart J Acute Cardiovasc Care. 2020; 9(8): 817-23. https://doi.org/10.1177/2048872620974605.
10. Piroth L, Cottenet J, Mariet A-S et al. Comparison of the characteristics, morbidity, and mortality of COVID-19 and seasonal influenza: a nationwide, population-based retrospective cohort study. Lancet Respir Med. 2021; 9(3): 251-9. https://doi.org/10.1016/S2213-2600(20)30527-0.
11. Li B, Yang J, Zhao F et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020; 109(5): 531-8. https://doi.org/10.1007/s00392-020-01626-9.
12. Libby P, Tabas I, Fredman G et al. Inflammation and its resolution as determinants of acute coronary syndromes. Circ Res. 2014; 114(12): 1867-79. https://doi.org/10.1161/CIRCRESAHA.114.302699.
13. Gopal R, Marinelli MA, Alcorn JF. Immune Mechanisms in Cardiovascular Diseases Associated With Viral Infection. Front Immunol. 2020; 11: 570681. https://doi.org/10.3389/fimmu.2020.570681.
14. Arai R, Fukamachi D, Ebuchi Y et al. Impact of the COVID-19 outbreak on hospitalizations and outcomes in patients with acute myocardial infarction in a Japanese Single Center. Heart Vessels. 2021; 36(10): 1474-83. https://doi.org/10.1007/s00380-021-01835-w.
15. Madjid M, Miller CC, Zarubaev VV et al. Influenza epidemics and acute respiratory disease activity are associated with a surge in autopsy-confirmed coronary heart disease death: results from 8 years of autopsies in 34,892 subjects. Eur Heart J. 2007; 28(10): 1205-10. https://doi.org/10.1093/eurheartj/ehm035.
16. Li B, Yang J, Zhao F et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020; 109(5): 531-8. https://doi.org/10.1007/s00392-020-01626-9.
17. Antuña P, Rivero F, Del Val D et al. Late Coronary Stent Thrombosis in a Patient With Coronavirus Disease 2019. JAMA Cardiol. 2020; 5(10): 1195-8. https://doi.org/10.1001/jamacardio.2020.2459.
18. Cornelissen A, Kutyna M, Cheng Q et al. Effects of simulated COVID-19 cytokine storm on stent thrombogenicity. Cardiovasc Revasc Med. 2021: S1553-8389(21)00183-4. https://doi.org/10.1016/j.carrev.2021.03.023.
19. Prieto-Lobato A, Ramos-Martínez R, Vallejo-Calcerrada N et al. A Case Series of Stent Thrombosis During the COVID-19 Pandemic. JACC Case Rep. 2020; 2(9): 1291-6. https://doi.org/10.1016/j.jaccas.2020.05.024.
20. Pirzada A, Mokhtar AT, Moeller AD. COVID-19 and Myocarditis: What Do We Know So Far? CJC Open. 2020; 2(4): 278-85. https://doi.org/10.1016/j.cjco.2020.05.005.
21. Baral N, Adhikari P, Adhikari G et al. Influenza Myocarditis: A Literature Review. Cureus. 2020; 12(12): e12007. https://doi.org/10.7759/cureus.12007.
22. Ho JS, Sia CH, Chan MY et al. Coronavirus-induced myocarditis: A meta-summary of cases. Heart Lung. 2020; 49(6): 681-5. https://doi.org/10.1016/j.hrtlng.2020.08.013.
23. Boukhris M, Hillani A, Moroni F et al. Cardiovascular Implications of the COVID-19 Pandemic: A Global Perspective. Can J Cardiol. 2020; 36(7): 1068-80. https://doi.org/10.1016/j.cjca.2020.05.018.
24. Kurz DJ, Eberli FR. Cardiovascular aspects of COVID-19. Swiss Med Wkly. 2020; 150: w20417. https://doi.org/10.4414/smw.2020.20417.
25. Lindner D, Fitzek A, Bräuninger H et al. Association of Cardiac Infection With SARS-CoV-2 in Confirmed COVID-19 Autopsy Cases. JAMA Cardiol. 2020; 5(11): 1281-5. https://doi.org/10.1001/jamacardio.2020.3551.
26. Siripanthong B, Nazarian S, Muser D et al. Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020; 17(9): 1463-71. https://doi.org/10.1016/j.hrthm.2020.05.001.
27. Filgueiras-Rama D, Vasilijevic J, Jalife J et al. Human influenza A virus causes myocardial and cardiac-specific conduction system infections associated with early inflammation and premature death. Cardiovasc Res. 2021; 117(3): 876-89. https://doi.org/10.1093/cvr/cvaa117.
28. Shchendrygina A, Nagel E, Puntmann V et al. COVID-19 myocarditis and prospective heart failure burden. Expert Rev Cardiovasc Ther. 2021; 19(1): 5-14. https://doi.org/10.1080/14779072.2021.
29. Sellers SA, Hagan RS, Hayden FG et al. The hidden burden of influenza: A review of the extra-pulmonary complications of influenza infection. Influenza Other Respir Viruses. 2017; 11(5): 372-93. https://doi.org/10.1111/irv.12470.
30. Puntmann VO, Carerj ML, Wieters I et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020; 5(11): 1265-73. https://doi.org/10.1001/jamacardio.2020.3557.
31. Ukimura A, Satomi H, Ooi Y et al. Myocarditis Associated with Influenza A H1N1pdm2009. Influenza Res Treat. 2012; 2012: 351979. https://doi.org/10.1155/2012/351979.
32. Halushka MK, Vander Heide RS. Myocarditis is rare in COVID-19 autopsies: cardiovascular findings across 277 postmortem examinations. Cardiovasc Pathol. 2021; 50: 107300. https://doi.org/10.1016/j.carpath.2020.107300.
33. Pabjan P, Błoniarczyk P, Stępień P et al. Pulmonary embolism complicating the course of COVID-19 – an underestimated condition? Medical Studies/ Studia Medyczne. 2020; 36(3): 206-10. https://doi.org/10.5114/ms.2020.99542.
34. Sakr Y, Giovini M, Leone M et al. Pulmonary embolism in patients with coronavirus disease-2019 (COVID-19) pneumonia: a narrative review. Ann Intensive Care. 2020; 10: 124. https://doi.org/10.1186/s13613-020-00741-0.
35. van Wissen M, Keller TT, Ronkes B et al. Influenza infection and risk of acute pulmonary embolism. Thromb J. 2007; 5(1): 16. https://doi.org/10.1186/1477-9560-5-16.
36. Potus F, Mai V, Lebret M et al. Novel insights on the pulmonary vascular consequences of COVID-19. Am J Physiol Lung Cell Mol Physiol. 2020; 319(2): 277-88. https://doi.org/10.1152/ajplung.00195.2020.
37. Bompard F, Monnier H, Saab I et al. Pulmonary embolism in patients with COVID-19 pneumonia. European Respir J. 2020; 56(1): 2001365. https://doi.org/10.1183/13993003.01365-2020.
38. Mei Y, Weinberg SE, Zhao L et al. Risk stratification of hospitalized COVID-19 patients through comparative studies of laboratory results with influenza. EClinicalMedicine. 2020; 26: 100475. https://doi.org/10.1016/j.eclinm.2020.100475.
39. Bai HX, Hsieh B, Xiong Z et al. Performance of Radiologists in Differentiating COVID-19 from Non-COVID-19 Viral Pneumonia at Chest CT. Radiology. 2020; 296(2): E46-E54. https://doi.org/10.1148/radiol.2020200823.
40. Escher F, Pietsch H, Aleshcheva G et al. Detection of viral SARS-CoV-2 genomes and histopathological changes in endomyocardial biopsies. ESC Heart Fail. 2020; 7(5): 2440-7. https://doi.org/10.1002/ehf2.12805.
41. Bader F, Manla Y, Atallah B et al. Heart failure and COVID-19. Heart Fail Rev. 2021; 26(1): 1-10. https://doi.org/10.1007/s10741-020-10008-2.
42. Panhwar MS, Kalra A, Gupta T et al. Effect of Influenza on Outcomes in Patients With Heart Failure. JACC Heart Fail. 2019; 7(2): 112-17. https://doi.org/10.1016/j.jchf.2018.10.011.
43. Madjid M, Aboshady I, Awan I et al. Influenza and cardiovascular disease: is there a causal relationship? Tex Heart Inst J. 2004; 31(1): 4-13.
44. https://www.who.int/mediacentre/news/statements/2017/flu/en. (access: 21.01.2022).
45. Paget J, Spreeuwenberg P, Charu V et al. Global mortality associated with seasonal influenza epidemics: New burden estimates and predictors from the GLaMOR Project. J Glob Health. 2019; 9(2): 020421. https://doi.org/10.7189/jogh.09.020421.
46. WHO Director-General's opening remarks at the media briefing on COVID-19 – March 2020. (access: 21.01.2022).
47. Gasecka A, Pruc M, Kukula K et al. Post-COVID-19 heart syndrome. Cardiol J. 2021; 28(2): 353-54. https://doi.org/10.5603/CJ.a2021.0028.