Kardiologiczne powikłania w zakażeniach wirusami SARS-CoV-2 oraz grypy – podobieństwa i różnice Artykuł przeglądowy

##plugins.themes.bootstrap3.article.main##

Agata Olecka
Jakub Smęt
Grzegorz Jan Horszczaruk
Aleksandra Stangret
Dariusz A. Kosior

Abstrakt

Zagrożenia zdrowotne związane z pandemią COVID-19 są obecnie tematem ogólnoświatowej dyskusji. W dyskursie publicznym zakażenie koronawirusem SARS-CoV-2 często jest porównywane z grypą. Zauważono, iż droga szerzenia się oraz objawy kliniczne w przypadku zakażenia tymi wirusami są podobne. Podobieństwa dotyczą też powikłań w układzie sercowo-naczyniowym. Dlatego interesująca wydaje się próba zestawienia powikłań kardiologicznych w przebiegu zakażenia wirusem grypy i wirusem SARS-CoV-2. Aktywacja procesu zapalnego w mięśniu sercowym wskutek infekcji wirusowej może prowadzić do zmian w kardiomiocytach, tkance śródmiąższowej, naczyniach wieńcowych lub osierdziu. Konsekwencją zmian zapalnych jest m.in. aktywacja procesów włóknienia na poziomie narządowym, prowadząca do zaburzeń kurczliwości ścian lewej komory i do rozwoju niewydolności serca.

Pobrania

Dane pobrania nie są jeszcze dostepne

##plugins.themes.bootstrap3.article.details##

Jak cytować
Olecka , A., Smęt , J., Horszczaruk , G. J., Stangret , A., & Kosior , D. A. (2022). Kardiologiczne powikłania w zakażeniach wirusami SARS-CoV-2 oraz grypy – podobieństwa i różnice . Kardiologia W Praktyce, 15(3-4), 31-40. Pobrano z https://journalsmededu.pl/index.php/kwp/article/view/1789
Dział
Dowody medyczne w kardiologii   

Bibliografia

1. Tschöpe C, Ammirati E, Bozkurt B et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat Rev Cardiol. 2021; 18: 169-93. https://doi.org/10.1038/s41569-020-00435-x.
2. Hamming I, Timens W, Bulthuis ML et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203(2): 631-37. https://doi.org/10.1002/path.1570.
3. Gopal R, Marinelli MA, Alcorn JF. Immune Mechanisms in Cardiovascular Diseases Associated With Viral Infection. Front Immunol. 2020; 11: 570681. https://doi.org/10.3389/fimmu.2020.570681.
4. Gheblawi M, Wang K, Viveiros A et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res. 2020; 126(10): 1456-74. https://doi.org/10.1161/CIRCRESAHA.120.317015.
5. Warner FJ, Smith AI, Hooper NM et al. Angiotensin-converting enzyme-2: a molecular and cellular perspective. Cell Mol Life Sci. 2004; 61(21): 2704-13. https://doi.org/10.1007/s00018-004-4240-7.
6. Liu X, Yang N, Tang J et al. Downregulation of angiotensin-converting enzyme 2 by the neuraminidase protein of influenza A (H1N1) virus. Virus Res. 2014; 185, 64-71. https://doi.org/10.1016/j.virusres.2014.03.010.
7. Varga Z, Flammer AJ, Steiger P et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395(10234): 1417-18.
8. Huang C, Wang Y, Li X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England). 2020; 395(10223): 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5.
9. Linschoten M, Peters S, van Smeden M et al. & CAPACITY-COVID collaborative consortium. Cardiac complications in patients hospitalised with COVID-19. Eur Heart J Acute Cardiovasc Care. 2020; 9(8): 817-23. https://doi.org/10.1177/2048872620974605.
10. Piroth L, Cottenet J, Mariet A-S et al. Comparison of the characteristics, morbidity, and mortality of COVID-19 and seasonal influenza: a nationwide, population-based retrospective cohort study. Lancet Respir Med. 2021; 9(3): 251-9. https://doi.org/10.1016/S2213-2600(20)30527-0.
11. Li B, Yang J, Zhao F et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020; 109(5): 531-8. https://doi.org/10.1007/s00392-020-01626-9.
12. Libby P, Tabas I, Fredman G et al. Inflammation and its resolution as determinants of acute coronary syndromes. Circ Res. 2014; 114(12): 1867-79. https://doi.org/10.1161/CIRCRESAHA.114.302699.
13. Gopal R, Marinelli MA, Alcorn JF. Immune Mechanisms in Cardiovascular Diseases Associated With Viral Infection. Front Immunol. 2020; 11: 570681. https://doi.org/10.3389/fimmu.2020.570681.
14. Arai R, Fukamachi D, Ebuchi Y et al. Impact of the COVID-19 outbreak on hospitalizations and outcomes in patients with acute myocardial infarction in a Japanese Single Center. Heart Vessels. 2021; 36(10): 1474-83. https://doi.org/10.1007/s00380-021-01835-w.
15. Madjid M, Miller CC, Zarubaev VV et al. Influenza epidemics and acute respiratory disease activity are associated with a surge in autopsy-confirmed coronary heart disease death: results from 8 years of autopsies in 34,892 subjects. Eur Heart J. 2007; 28(10): 1205-10. https://doi.org/10.1093/eurheartj/ehm035.
16. Li B, Yang J, Zhao F et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020; 109(5): 531-8. https://doi.org/10.1007/s00392-020-01626-9.
17. Antuña P, Rivero F, Del Val D et al. Late Coronary Stent Thrombosis in a Patient With Coronavirus Disease 2019. JAMA Cardiol. 2020; 5(10): 1195-8. https://doi.org/10.1001/jamacardio.2020.2459.
18. Cornelissen A, Kutyna M, Cheng Q et al. Effects of simulated COVID-19 cytokine storm on stent thrombogenicity. Cardiovasc Revasc Med. 2021: S1553-8389(21)00183-4. https://doi.org/10.1016/j.carrev.2021.03.023.
19. Prieto-Lobato A, Ramos-Martínez R, Vallejo-Calcerrada N et al. A Case Series of Stent Thrombosis During the COVID-19 Pandemic. JACC Case Rep. 2020; 2(9): 1291-6. https://doi.org/10.1016/j.jaccas.2020.05.024.
20. Pirzada A, Mokhtar AT, Moeller AD. COVID-19 and Myocarditis: What Do We Know So Far? CJC Open. 2020; 2(4): 278-85. https://doi.org/10.1016/j.cjco.2020.05.005.
21. Baral N, Adhikari P, Adhikari G et al. Influenza Myocarditis: A Literature Review. Cureus. 2020; 12(12): e12007. https://doi.org/10.7759/cureus.12007.
22. Ho JS, Sia CH, Chan MY et al. Coronavirus-induced myocarditis: A meta-summary of cases. Heart Lung. 2020; 49(6): 681-5. https://doi.org/10.1016/j.hrtlng.2020.08.013.
23. Boukhris M, Hillani A, Moroni F et al. Cardiovascular Implications of the COVID-19 Pandemic: A Global Perspective. Can J Cardiol. 2020; 36(7): 1068-80. https://doi.org/10.1016/j.cjca.2020.05.018.
24. Kurz DJ, Eberli FR. Cardiovascular aspects of COVID-19. Swiss Med Wkly. 2020; 150: w20417. https://doi.org/10.4414/smw.2020.20417.
25. Lindner D, Fitzek A, Bräuninger H et al. Association of Cardiac Infection With SARS-CoV-2 in Confirmed COVID-19 Autopsy Cases. JAMA Cardiol. 2020; 5(11): 1281-5. https://doi.org/10.1001/jamacardio.2020.3551.
26. Siripanthong B, Nazarian S, Muser D et al. Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020; 17(9): 1463-71. https://doi.org/10.1016/j.hrthm.2020.05.001.
27. Filgueiras-Rama D, Vasilijevic J, Jalife J et al. Human influenza A virus causes myocardial and cardiac-specific conduction system infections associated with early inflammation and premature death. Cardiovasc Res. 2021; 117(3): 876-89. https://doi.org/10.1093/cvr/cvaa117.
28. Shchendrygina A, Nagel E, Puntmann V et al. COVID-19 myocarditis and prospective heart failure burden. Expert Rev Cardiovasc Ther. 2021; 19(1): 5-14. https://doi.org/10.1080/14779072.2021.
29. Sellers SA, Hagan RS, Hayden FG et al. The hidden burden of influenza: A review of the extra-pulmonary complications of influenza infection. Influenza Other Respir Viruses. 2017; 11(5): 372-93. https://doi.org/10.1111/irv.12470.
30. Puntmann VO, Carerj ML, Wieters I et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020; 5(11): 1265-73. https://doi.org/10.1001/jamacardio.2020.3557.
31. Ukimura A, Satomi H, Ooi Y et al. Myocarditis Associated with Influenza A H1N1pdm2009. Influenza Res Treat. 2012; 2012: 351979. https://doi.org/10.1155/2012/351979.
32. Halushka MK, Vander Heide RS. Myocarditis is rare in COVID-19 autopsies: cardiovascular findings across 277 postmortem examinations. Cardiovasc Pathol. 2021; 50: 107300. https://doi.org/10.1016/j.carpath.2020.107300.
33. Pabjan P, Błoniarczyk P, Stępień P et al. Pulmonary embolism complicating the course of COVID-19 – an underestimated condition? Medical Studies/ Studia Medyczne. 2020; 36(3): 206-10. https://doi.org/10.5114/ms.2020.99542.
34. Sakr Y, Giovini M, Leone M et al. Pulmonary embolism in patients with coronavirus disease-2019 (COVID-19) pneumonia: a narrative review. Ann Intensive Care. 2020; 10: 124. https://doi.org/10.1186/s13613-020-00741-0.
35. van Wissen M, Keller TT, Ronkes B et al. Influenza infection and risk of acute pulmonary embolism. Thromb J. 2007; 5(1): 16. https://doi.org/10.1186/1477-9560-5-16.
36. Potus F, Mai V, Lebret M et al. Novel insights on the pulmonary vascular consequences of COVID-19. Am J Physiol Lung Cell Mol Physiol. 2020; 319(2): 277-88. https://doi.org/10.1152/ajplung.00195.2020.
37. Bompard F, Monnier H, Saab I et al. Pulmonary embolism in patients with COVID-19 pneumonia. European Respir J. 2020; 56(1): 2001365. https://doi.org/10.1183/13993003.01365-2020.
38. Mei Y, Weinberg SE, Zhao L et al. Risk stratification of hospitalized COVID-19 patients through comparative studies of laboratory results with influenza. EClinicalMedicine. 2020; 26: 100475. https://doi.org/10.1016/j.eclinm.2020.100475.
39. Bai HX, Hsieh B, Xiong Z et al. Performance of Radiologists in Differentiating COVID-19 from Non-COVID-19 Viral Pneumonia at Chest CT. Radiology. 2020; 296(2): E46-E54. https://doi.org/10.1148/radiol.2020200823.
40. Escher F, Pietsch H, Aleshcheva G et al. Detection of viral SARS-CoV-2 genomes and histopathological changes in endomyocardial biopsies. ESC Heart Fail. 2020; 7(5): 2440-7. https://doi.org/10.1002/ehf2.12805.
41. Bader F, Manla Y, Atallah B et al. Heart failure and COVID-19. Heart Fail Rev. 2021; 26(1): 1-10. https://doi.org/10.1007/s10741-020-10008-2.
42. Panhwar MS, Kalra A, Gupta T et al. Effect of Influenza on Outcomes in Patients With Heart Failure. JACC Heart Fail. 2019; 7(2): 112-17. https://doi.org/10.1016/j.jchf.2018.10.011.
43. Madjid M, Aboshady I, Awan I et al. Influenza and cardiovascular disease: is there a causal relationship? Tex Heart Inst J. 2004; 31(1): 4-13.
44. https://www.who.int/mediacentre/news/statements/2017/flu/en. (access: 21.01.2022).
45. Paget J, Spreeuwenberg P, Charu V et al. Global mortality associated with seasonal influenza epidemics: New burden estimates and predictors from the GLaMOR Project. J Glob Health. 2019; 9(2): 020421. https://doi.org/10.7189/jogh.09.020421.
46. WHO Director-General's opening remarks at the media briefing on COVID-19 – March 2020. (access: 21.01.2022).
47. Gasecka A, Pruc M, Kukula K et al. Post-COVID-19 heart syndrome. Cardiol J. 2021; 28(2): 353-54. https://doi.org/10.5603/CJ.a2021.0028.