Kardiologiczne powikłania w zakażeniach wirusami SARS-CoV-2 oraz grypy – podobieństwa i różnice Artykuł przeglądowy
##plugins.themes.bootstrap3.article.main##
Abstrakt
Zagrożenia zdrowotne związane z pandemią COVID-19 są obecnie tematem ogólnoświatowej dyskusji. W dyskursie publicznym zakażenie koronawirusem SARS-CoV-2 często jest porównywane z grypą. Zauważono, iż droga szerzenia się oraz objawy kliniczne w przypadku zakażenia tymi wirusami są podobne. Podobieństwa dotyczą też powikłań w układzie sercowo-naczyniowym. Dlatego interesująca wydaje się próba zestawienia powikłań kardiologicznych w przebiegu zakażenia wirusem grypy i wirusem SARS-CoV-2. Aktywacja procesu zapalnego w mięśniu sercowym wskutek infekcji wirusowej może prowadzić do zmian w kardiomiocytach, tkance śródmiąższowej, naczyniach wieńcowych lub osierdziu. Konsekwencją zmian zapalnych jest m.in. aktywacja procesów włóknienia na poziomie narządowym, prowadząca do zaburzeń kurczliwości ścian lewej komory i do rozwoju niewydolności serca.
Pobrania
##plugins.themes.bootstrap3.article.details##
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.
Copyright: © Medical Education sp. z o.o. This is an Open Access article distributed under the terms of the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). License (https://creativecommons.org/licenses/by-nc/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Address reprint requests to: Medical Education, Marcin Kuźma (marcin.kuzma@mededu.pl)
Bibliografia
2. Hamming I, Timens W, Bulthuis ML et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203(2): 631-37. https://doi.org/10.1002/path.1570.
3. Gopal R, Marinelli MA, Alcorn JF. Immune Mechanisms in Cardiovascular Diseases Associated With Viral Infection. Front Immunol. 2020; 11: 570681. https://doi.org/10.3389/fimmu.2020.570681.
4. Gheblawi M, Wang K, Viveiros A et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res. 2020; 126(10): 1456-74. https://doi.org/10.1161/CIRCRESAHA.120.317015.
5. Warner FJ, Smith AI, Hooper NM et al. Angiotensin-converting enzyme-2: a molecular and cellular perspective. Cell Mol Life Sci. 2004; 61(21): 2704-13. https://doi.org/10.1007/s00018-004-4240-7.
6. Liu X, Yang N, Tang J et al. Downregulation of angiotensin-converting enzyme 2 by the neuraminidase protein of influenza A (H1N1) virus. Virus Res. 2014; 185, 64-71. https://doi.org/10.1016/j.virusres.2014.03.010.
7. Varga Z, Flammer AJ, Steiger P et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395(10234): 1417-18.
8. Huang C, Wang Y, Li X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England). 2020; 395(10223): 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5.
9. Linschoten M, Peters S, van Smeden M et al. & CAPACITY-COVID collaborative consortium. Cardiac complications in patients hospitalised with COVID-19. Eur Heart J Acute Cardiovasc Care. 2020; 9(8): 817-23. https://doi.org/10.1177/2048872620974605.
10. Piroth L, Cottenet J, Mariet A-S et al. Comparison of the characteristics, morbidity, and mortality of COVID-19 and seasonal influenza: a nationwide, population-based retrospective cohort study. Lancet Respir Med. 2021; 9(3): 251-9. https://doi.org/10.1016/S2213-2600(20)30527-0.
11. Li B, Yang J, Zhao F et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020; 109(5): 531-8. https://doi.org/10.1007/s00392-020-01626-9.
12. Libby P, Tabas I, Fredman G et al. Inflammation and its resolution as determinants of acute coronary syndromes. Circ Res. 2014; 114(12): 1867-79. https://doi.org/10.1161/CIRCRESAHA.114.302699.
13. Gopal R, Marinelli MA, Alcorn JF. Immune Mechanisms in Cardiovascular Diseases Associated With Viral Infection. Front Immunol. 2020; 11: 570681. https://doi.org/10.3389/fimmu.2020.570681.
14. Arai R, Fukamachi D, Ebuchi Y et al. Impact of the COVID-19 outbreak on hospitalizations and outcomes in patients with acute myocardial infarction in a Japanese Single Center. Heart Vessels. 2021; 36(10): 1474-83. https://doi.org/10.1007/s00380-021-01835-w.
15. Madjid M, Miller CC, Zarubaev VV et al. Influenza epidemics and acute respiratory disease activity are associated with a surge in autopsy-confirmed coronary heart disease death: results from 8 years of autopsies in 34,892 subjects. Eur Heart J. 2007; 28(10): 1205-10. https://doi.org/10.1093/eurheartj/ehm035.
16. Li B, Yang J, Zhao F et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020; 109(5): 531-8. https://doi.org/10.1007/s00392-020-01626-9.
17. Antuña P, Rivero F, Del Val D et al. Late Coronary Stent Thrombosis in a Patient With Coronavirus Disease 2019. JAMA Cardiol. 2020; 5(10): 1195-8. https://doi.org/10.1001/jamacardio.2020.2459.
18. Cornelissen A, Kutyna M, Cheng Q et al. Effects of simulated COVID-19 cytokine storm on stent thrombogenicity. Cardiovasc Revasc Med. 2021: S1553-8389(21)00183-4. https://doi.org/10.1016/j.carrev.2021.03.023.
19. Prieto-Lobato A, Ramos-Martínez R, Vallejo-Calcerrada N et al. A Case Series of Stent Thrombosis During the COVID-19 Pandemic. JACC Case Rep. 2020; 2(9): 1291-6. https://doi.org/10.1016/j.jaccas.2020.05.024.
20. Pirzada A, Mokhtar AT, Moeller AD. COVID-19 and Myocarditis: What Do We Know So Far? CJC Open. 2020; 2(4): 278-85. https://doi.org/10.1016/j.cjco.2020.05.005.
21. Baral N, Adhikari P, Adhikari G et al. Influenza Myocarditis: A Literature Review. Cureus. 2020; 12(12): e12007. https://doi.org/10.7759/cureus.12007.
22. Ho JS, Sia CH, Chan MY et al. Coronavirus-induced myocarditis: A meta-summary of cases. Heart Lung. 2020; 49(6): 681-5. https://doi.org/10.1016/j.hrtlng.2020.08.013.
23. Boukhris M, Hillani A, Moroni F et al. Cardiovascular Implications of the COVID-19 Pandemic: A Global Perspective. Can J Cardiol. 2020; 36(7): 1068-80. https://doi.org/10.1016/j.cjca.2020.05.018.
24. Kurz DJ, Eberli FR. Cardiovascular aspects of COVID-19. Swiss Med Wkly. 2020; 150: w20417. https://doi.org/10.4414/smw.2020.20417.
25. Lindner D, Fitzek A, Bräuninger H et al. Association of Cardiac Infection With SARS-CoV-2 in Confirmed COVID-19 Autopsy Cases. JAMA Cardiol. 2020; 5(11): 1281-5. https://doi.org/10.1001/jamacardio.2020.3551.
26. Siripanthong B, Nazarian S, Muser D et al. Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020; 17(9): 1463-71. https://doi.org/10.1016/j.hrthm.2020.05.001.
27. Filgueiras-Rama D, Vasilijevic J, Jalife J et al. Human influenza A virus causes myocardial and cardiac-specific conduction system infections associated with early inflammation and premature death. Cardiovasc Res. 2021; 117(3): 876-89. https://doi.org/10.1093/cvr/cvaa117.
28. Shchendrygina A, Nagel E, Puntmann V et al. COVID-19 myocarditis and prospective heart failure burden. Expert Rev Cardiovasc Ther. 2021; 19(1): 5-14. https://doi.org/10.1080/14779072.2021.
29. Sellers SA, Hagan RS, Hayden FG et al. The hidden burden of influenza: A review of the extra-pulmonary complications of influenza infection. Influenza Other Respir Viruses. 2017; 11(5): 372-93. https://doi.org/10.1111/irv.12470.
30. Puntmann VO, Carerj ML, Wieters I et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020; 5(11): 1265-73. https://doi.org/10.1001/jamacardio.2020.3557.
31. Ukimura A, Satomi H, Ooi Y et al. Myocarditis Associated with Influenza A H1N1pdm2009. Influenza Res Treat. 2012; 2012: 351979. https://doi.org/10.1155/2012/351979.
32. Halushka MK, Vander Heide RS. Myocarditis is rare in COVID-19 autopsies: cardiovascular findings across 277 postmortem examinations. Cardiovasc Pathol. 2021; 50: 107300. https://doi.org/10.1016/j.carpath.2020.107300.
33. Pabjan P, Błoniarczyk P, Stępień P et al. Pulmonary embolism complicating the course of COVID-19 – an underestimated condition? Medical Studies/ Studia Medyczne. 2020; 36(3): 206-10. https://doi.org/10.5114/ms.2020.99542.
34. Sakr Y, Giovini M, Leone M et al. Pulmonary embolism in patients with coronavirus disease-2019 (COVID-19) pneumonia: a narrative review. Ann Intensive Care. 2020; 10: 124. https://doi.org/10.1186/s13613-020-00741-0.
35. van Wissen M, Keller TT, Ronkes B et al. Influenza infection and risk of acute pulmonary embolism. Thromb J. 2007; 5(1): 16. https://doi.org/10.1186/1477-9560-5-16.
36. Potus F, Mai V, Lebret M et al. Novel insights on the pulmonary vascular consequences of COVID-19. Am J Physiol Lung Cell Mol Physiol. 2020; 319(2): 277-88. https://doi.org/10.1152/ajplung.00195.2020.
37. Bompard F, Monnier H, Saab I et al. Pulmonary embolism in patients with COVID-19 pneumonia. European Respir J. 2020; 56(1): 2001365. https://doi.org/10.1183/13993003.01365-2020.
38. Mei Y, Weinberg SE, Zhao L et al. Risk stratification of hospitalized COVID-19 patients through comparative studies of laboratory results with influenza. EClinicalMedicine. 2020; 26: 100475. https://doi.org/10.1016/j.eclinm.2020.100475.
39. Bai HX, Hsieh B, Xiong Z et al. Performance of Radiologists in Differentiating COVID-19 from Non-COVID-19 Viral Pneumonia at Chest CT. Radiology. 2020; 296(2): E46-E54. https://doi.org/10.1148/radiol.2020200823.
40. Escher F, Pietsch H, Aleshcheva G et al. Detection of viral SARS-CoV-2 genomes and histopathological changes in endomyocardial biopsies. ESC Heart Fail. 2020; 7(5): 2440-7. https://doi.org/10.1002/ehf2.12805.
41. Bader F, Manla Y, Atallah B et al. Heart failure and COVID-19. Heart Fail Rev. 2021; 26(1): 1-10. https://doi.org/10.1007/s10741-020-10008-2.
42. Panhwar MS, Kalra A, Gupta T et al. Effect of Influenza on Outcomes in Patients With Heart Failure. JACC Heart Fail. 2019; 7(2): 112-17. https://doi.org/10.1016/j.jchf.2018.10.011.
43. Madjid M, Aboshady I, Awan I et al. Influenza and cardiovascular disease: is there a causal relationship? Tex Heart Inst J. 2004; 31(1): 4-13.
44. https://www.who.int/mediacentre/news/statements/2017/flu/en. (access: 21.01.2022).
45. Paget J, Spreeuwenberg P, Charu V et al. Global mortality associated with seasonal influenza epidemics: New burden estimates and predictors from the GLaMOR Project. J Glob Health. 2019; 9(2): 020421. https://doi.org/10.7189/jogh.09.020421.
46. WHO Director-General's opening remarks at the media briefing on COVID-19 – March 2020. (access: 21.01.2022).
47. Gasecka A, Pruc M, Kukula K et al. Post-COVID-19 heart syndrome. Cardiol J. 2021; 28(2): 353-54. https://doi.org/10.5603/CJ.a2021.0028.