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Laser refractive treatments 

might induce changes in the 

mechanical resistance of the 

cornea. The parameters derived 

from the current as well as new 

technologies may be helpful in 

assessing corneal biomechanical 

changes after laser refractive 

surgery.
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aBstract

The role of corneal biomechanical properties in patients referred to laser vision 

correction (LVC) is currently being raised. Understanding of corneal biome-

chanics may support the proper selection of refractive surgery candidates, im-

prove the refractive outcomes and safety of refractive procedures. The Ocular 

Response Analyzer (ORA) and Corvis ST are commonly used devices to assess 

corneal biomechanical parameters in LVC. The vertical corneal incisions have 

a greater impact on corneal biomechanics weakening than horizontal incisions. 

Maintaining the high biomechanical strength of the cornea following LVC can 

decrease the potential risk of postoperative ectasia.
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Background

Laser vision correction (LVC) is a group of corneal re-

fractive surgery procedures which are commonly used in 

refractive error management. The safety and efficiency of 

LVC as well as frequent postoperative visual rehabilitation 

has made these procedures the most common ophthalmic 

surgery today. In most cases LVC allows complete correc-

tion of refractive error, thus improving the patient’s quality 

of life. The high safety profile of LVC procedures is condi-

tioned by the precise patients qualification, including a de-

tailed assessment of the corneal tomography, pachymetry, 

aberrometry and finally the corneal biomechanics the im-

portance of which is now strongly emphasized in refractive 

surgery. Understanding of corneal biomechanical proper-

ties can reduce the risk of postoperative keratectasia as well 

as improve treatment results in difficult refractive cases [1]. 

Devices such as the Corneal Response Analyzer (ORA) or 

CORVIS-ST enable the clinical evaluation of corneal bio-

mechanics in LVC candidates. 

Methods of selected corneal refractive surgery 
procedures

Many studies report that LVC compromise the biomechan-

ical strength of the cornea [1–6]. However, the change in 

corneal biomechanics is strongly related to the refractive 

surgery technique and ablation profile. In brief, the corneal 

refractive procedures can be divided into:

•	 the superficial ones, such as photorefractive keratecto-

my (PRK) 

•	 laser-assisted sub-epithelial keratectomy (LASEK) and 

stromal techniques that include: flap-related laser- 

-assisted in situ keratomileusis (LASIK) and microinva-

sive lenticule extraction (small incision lenticule extrac-

tion, SMILE and minimal invasive lenticule extraction, 

SmartSight).

In PRK, the corneal epithelium is precisely removed by use 

of excimer laser (trans-PRK), alcohol, mechanical surgical 

devices or combination of the above techniques. After the 

epithelium debridement, the anterior stroma is ablated by 

the excimer laser. Corneal abrasion causes postoperative 

pain, prolonged healing process and visual recovery [1]. In 

LASEK procedure, the corneal epithelium is soaked with 

20% ethanol and then carefully pushed aside just before an-

terior stroma ablation. At the end of the procedure, the ep-

ithelium is slid over the cornea again [1]. LASIK procedure 

requires formation of corneal flap with use of femtosecond 

laser (previously microkeratome knife). The surgeon lifts 

the corneal flap and the excimer laser ablates the exposed 

stroma [1]. In SMILE, the femtosecond laser cuts off the 

lenticule in the anterior corneal stroma. Then the mi-

cro-side cuts are performed to allow the surgeon mechan-

ical removal of lenticule [1]. The advantages of LASIK and 

SMILE over surface procedures are: the painless healing 

process and almost immediate good visual acuity.

Methods of corneal BioMechanical properties 
assessMent

The devices used in clinical evaluation of corneal biome-

chanical parameters are: the Ocular Response Analyzer® 

(ORA; Reichert Ophthalmic Instruments, NJ, USA) and 

Corvis ST® (CST; Oculus Opticgerate, Inc. Wetzlar, Germa-

ny). To understand and assess the corneal biomechanics, 

the parameters such as: corneal viscosity, elasticity, stiffness, 

hysteresis, resistance factor were used by the ORA and CST 

manufacturers. 

The corneal tissue is compared to the visco-elastic materi-

al. Viscosity is defined as the resistance against progressive 

deformation by the shear stress. Viscosity of the cornea is 

a result of stromal matrix hydration maintained by proteo-

glycans [7]. Elasticity of the material is the ability of return 

to the original shape after deformation by the applied force. 

It is considered that the collagen fibres of the corneal stro-

ma are responsible for corneal elasticity [7]. Stiffness of the 

cornea describes its overall rigidity and resistance to the ap-

plied force. The corneal stiffness is dependent on both the 

elastic properties of the cornea and the amount of corneal 

tissue (corneal thickness) [7].

The ORA tonometer measures the corneal hysteresis (CH) 

and the corneal resistance factor (CFR). CH is obtained by 

calculation of the difference between two applanation pres-

sures P1 and P2 measured during corneal deflection by the 

air-impulse. The ORA measures CH by the reflection of the 

infrared laser beam to capture the deformation of the cor-

nea. Clinically, CH reflects the viscoelasticity of the cornea. 

CRF defines the overall corneal stiffness taking into account 

both, the corneal elasticity and corneal thickness. CRF is 

mathematically described as P1 − K × P2, where the constant 

K = 0.7 is derived from empirical analysis of the relation be-

tween P1 and P2 parameters and central corneal thickness 

(CCT). Lowering of CH and CRF parameters may suggest 

the risk of postoperative corneal ectasia, as it was report-

ed in numerous studies [8–10]. In addition ORA provides 

2 values of intraocular pressure (IOP): Goldmann-correlat-

ed IOP (IOPg) and corneal compensated IOP (IOPcc) [2]. 

Dynamic Scheimpflug Analyzer Corvis® ST is a second de-

vice commonly used for non-contact tonometry with the 

analysis of corneal thickness and biomechanics. Similar-

ly to the ORA measurement principle, the assessment of 

corneal biomechanics in CST is based on the inward and 

outward corneal deformation by an air pulse and captur-

ing the pass through two applanation phases. The device 

uses an ultra-high-speed Scheimpflug camera which that 

takes 140 horizontal 8 mm frames in 33 ms, allowing ac-
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curate evaluation of the corneal deflection in applanation 

points [11]. The deformation amplitude (DA) is defined as 

the greatest inward dislocation of the corneal apex meas-

ured at the highest concavity (HC) point [11]. DA ratio of 

central and peripheral deflection is assessed in a distance of 

1 mm and 2 mm resulting in DAR-1 and DAR-2 parameters 

and stiffness parameter at the 1st applanation (SPA1) [12]. 

Applanation lengths (AL) and corneal velocities (CVel) are 

measured in inward and outward phases. The curvature 

radius at the highest concavity (curvature radius HC) inte-

grated inverse radius (IntInverseR) and maximum inverse 

radius (InverseR) are also documented. The higher values 

of IR, the lower corneal resistance to deformation what 

indicate lower corneal stiffness [12]. Corneal pachymetry 

(Pachy) and parameters essential in potential keratoconus 

detection such as Ambrosio Rational Thickness horizontal 

(ARTh) and Pachyslope are measured before the air-puff 

generation [12]. Moreover, Corvis biomechanical index 

(CBI) and tomographic and biomechanical index (TBI) pa-

rameters are combined Dynamic Corneal Response (DCR) 

parameters that indicate the difference between healthy 

and subclinical ectasia or keratoconic eyes [12]. The result 

of Corvis tonometry is biomechanical corrected intraocu-

lar pressure (bIOP) [3].

Other methods that measure biomechanical corneal prop-

erties in vivo include Brillouin optical microscopy, sur-

face wave elastometry, optical interferometric techniques, 

quantitative ultrasonic spectroscopy and optical coherence 

tomographic elastography, but these technologies are not 

commercially available [13, 14]. 

the corneal stroMa Morphology and 
BioMechanics change after laser vision 
correction

The corneal tissue is composed of precisely oriented lay-

ers of collagen fibers, which determines the transparen-

cy and strength of the cornea. Stromal collagen fibers are 

surrounded by proteoglycan molecules responsible for the 

proper distribution of collagen and hydration of the stro-

ma. The flap formation and ablation of the stromal tissue 

during LASIK surgery cuts the anterior collagen bundles 

of the cornea, which means that the peripheral anterior 

fibers are no longer taut and therefore relax, resulting in 

a thickening of the peripheral stroma and increased water 

accumulation [15]. The consequence of anterior peripher-

al stromal fibers intersection is the exertion of tension on 

the posterior bundles, which results in a central flattening of 

the cornea. Additionally, the posterior stromal lamellae also 

have to cope with the force exerted by intraocular pressure 

[15]. The redistribution of forces triggered by the change of 

corneal shape after laser vision correction may weaken the 

corneal biomechanics over time [15]. Vertical lateral inci-

sions (side cuts) of corneal lamellae have a greater impact on 

weakening of the corneal biomechanics than horizontal in-

cisions (cap, lenticule, flap cuts) [1, 4]. This can theoretically 

explain the greater lowering of corneal stiffness and overall 

biomechanics after flap related procedures (LASIK) rather 

than after SMILE [1, 4]. What is interesting, the experimen-

tal studies reported that posterior corneal stroma is weaker 

than anterior stroma [15–19]. This fact is explained by the 

specific structure of collagen layers in different parts of the 

corneal stroma as well as the stronger anterior cross-link-

ing [15]. Furthermore, some authors raise the role of the 

corneal ablation profile as an important factor influencing 

postoperative corneal biomechanics [20, 21]. The peripher-

al hyperopic ablation profile in thicker paracentral cornea 

results in lower risk and incidence of corneal ectasia after 

LASIK and SMILE in hyperopia correction in contrast to 

the myopia correction [21].

conclusions

Keratectasia after corneal refractive surgery procedures is 

rare but severe complication, the risk of which must be ex-

cluded in LVC candidates. The corneal biomechanics as-

sessment by ORA or CST is useful to determine the corneal 

strength and diminish the risk of postoperative corneal ec-

tasia. Although the biomechanical properties alone cannot 

guarantee that the ectasia will not occur, the understanding 

of corneal stiffness and biomechanical structure can im-

prove the surgical planning, support the choice of surgical 

method and help in postoperative ectasia-suspected eyes 

exclusion.
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